東北大 円の方程式 領域 - 質問解決D.B.(データベース)

東北大 円の方程式 領域

問題文全文(内容文):
領域$D$は次の連立不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-6x+y^2+5 \leqq 0 \\
x+y \leqq 5
\end{array}
\right.
\end{eqnarray}$

$x^2+y^2-2ax-2y+a^2=0$が$D$を通るような$a$の最大値と最小値を求めよ

出典:2006年東北大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
領域$D$は次の連立不等式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-6x+y^2+5 \leqq 0 \\
x+y \leqq 5
\end{array}
\right.
\end{eqnarray}$

$x^2+y^2-2ax-2y+a^2=0$が$D$を通るような$a$の最大値と最小値を求めよ

出典:2006年東北大学 過去問
投稿日:2019.06.24

<関連動画>

#明治大学2023#極限_48

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log (2e^{3x}+4)-ax-b$が
$\displaystyle \lim_{x\to\infty} \ f(x)=0$のとき,
$a,b$の値を求めよ.

2023明治大学過去問題
この動画を見る 

福田のおもしろ数学473〜難しい連立方程式を解くための飛び道具

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\begin{eqnarray}
\left\{
\begin{array}{l}
5\left(x+\dfrac{1}{x}\right)=12\left(y+\dfrac{1}{y}\right)=13\left(z+\dfrac{1}{z}\right) \\
xy+yz+zx=1
\end{array}
\right.
\end{eqnarray}$

を満たす実数$x,y,z$をすべて求めよ。
この動画を見る 

高専数学 微積I #p 62 ex(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}x \log \left(1+\dfrac{3}{x}\right)$
を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-96 三角関数のグラフ②

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=2\sin \theta$

②$y=\cos\theta+1$

③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
この動画を見る 

高専数学 微積I #259(2) 広義積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{\infty}\dfrac{1}{r(\log r)^2} dr$
を計算せよ.
この動画を見る 
PAGE TOP