【高校数学】 数B-14 ベクトルの内積③ - 質問解決D.B.(データベース)

【高校数学】 数B-14 ベクトルの内積③

問題文全文(内容文):
$\overrightarrow{ a }=(a_1.a_2). \overrightarrow{ b }=(b_1.b_2)$のとき、$\overrightarrow{ a }・\overrightarrow{ b }=$①______

②$\overrightarrow{ a }= (4,5),\overrightarrow{ b }=(3,-2)$の内積を求めよう。

③$|\overrightarrow{ a }|=3,|\overrightarrow{ b }|=2,\overrightarrow{ a }・\overrightarrow{ b }=-3$を満たす2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角$\theta$を求めよう。

④$\overrightarrow{ a }=(-1.2),\overrightarrow{ b }=(3.-1)$のなす角$\theta$を求めよう。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ a }=(a_1.a_2). \overrightarrow{ b }=(b_1.b_2)$のとき、$\overrightarrow{ a }・\overrightarrow{ b }=$①______

②$\overrightarrow{ a }= (4,5),\overrightarrow{ b }=(3,-2)$の内積を求めよう。

③$|\overrightarrow{ a }|=3,|\overrightarrow{ b }|=2,\overrightarrow{ a }・\overrightarrow{ b }=-3$を満たす2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角$\theta$を求めよう。

④$\overrightarrow{ a }=(-1.2),\overrightarrow{ b }=(3.-1)$のなす角$\theta$を求めよう。
投稿日:2015.12.03

<関連動画>

【数C】ベクトルの基本⑮直線の方程式を求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(3,5),方向ベクトルd=(1,2)のとき直線の方程式を求めよ。
A(1,3),B(2,4)のとき2点を通る直線の方程式を求めよ。
A(3,2),法線ベクトルd=(4,5)のとき直線の方程式を求めよ。
この動画を見る 

【わかりやすく解説】位置ベクトル 点Pの位置を求める問題②(数学B/平面ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$\overrightarrow{ PA }+3\overrightarrow{ PB }+4\overrightarrow{ PC }=\vec{ 0 }$を満たす$\triangle ABC$の内部に点$P$があるとき、点$P$はどのような位置にあるか。
この動画を見る 

福田の数学〜上智大学2024理工学部第3問〜円の内部を反射しながら進む点の通過範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
点$O$を中心とし半径が$1$の円形のビリヤード台がある。台の縁の点$P_1$に大きさが無視できる球$Q$を置き、半径$P_1O$とのなす角が$\frac{\pi}{8}$の方向へ球$Q$を打ち出す。
球$Q$は、ビリヤード台の縁に当たると、図のように入射角と反射角が等しくなるように反射し、一度打ち出されたら止まらないものとする。
$i=1,2,3,\cdots$に対し、点$P_i$の次に球$Q$が縁に当たる点を$P_{i+1}$とし、$\overrightarrow{OP_i}=\overrightarrow{p_i}$とする。
(1)$\overrightarrow{p_3}=\fbox{あ}\overrightarrow{p_1}+\fbox{い}\overrightarrow{p_2},\overrightarrow{p_4}=\fbox{う}\overrightarrow{p_1}+\fbox{え}\overrightarrow{p_2}$である。
(2)$P_i=P_1となるiのうち、 i\geqq 2で最小のものは\fbox{ソ}である。$
(3)$線分P_1P_2とP_3P_4 との交点をA、線分P_1P_2とP_6P_7との交点をBとすると$
$\overrightarrow{OA}=\fbox{お}\overrightarrow{p_1}+\fbox{か}\overrightarrow{p_2},\overrightarrow{OB}=\fbox{き}\overrightarrow{p_1}+\fbox{く}\overrightarrow{p_2}$である。
(4)球$Q$が点$P_1$から打ち出されてから初めて再び点$P_1$に到達するまでに、中心$O$と球$Q$とを結ぶ線分$OQ$がちょうど2回通過する領域の面積は$\fbox{タ}+\fbox{チ}\sqrt{2}$である。
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その2

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 

ベクトルの簡単すぎる京大の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle OAB$において$OA=3,OB=2,\angle AOB=90^{ \circ }$とする。$\triangle OAB$の垂心を$H$とするとき,$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。

京都大過去問
この動画を見る 
PAGE TOP