中高教材
中高教材
【数Ⅲ】【関数と極限】nは自然数とし、h>0のとき、不等式(1+h)^n≧1+nh+n(n-1)/2・h²が成り立つ。このことを用いて、数列{n/3^n}の極限を求めよ。

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
nは自然数とし、h>0のとき、
不等式$(1+h)^n≧1+nh+\dfrac{n(n-1)}{2}・h²$が成り立つ。
このことを用いて、数列$\dfrac{n}{3^n}$の極限を求めよ。
この動画を見る
nは自然数とし、h>0のとき、
不等式$(1+h)^n≧1+nh+\dfrac{n(n-1)}{2}・h²$が成り立つ。
このことを用いて、数列$\dfrac{n}{3^n}$の極限を求めよ。
【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の極限を求めよ。a₁=0、a₂=1、3an+₂=an+₁+2an他

単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の極限を求めよ。
(1) $a₁=0$、$a₂=1$、$3a_{n+2}=a_{n+1}+2a_n$
(2) $a₁=0$、$a₂=1$、$a_{n+2}-7a_{n+1}+10a_n=0$
(3) $a₁=1$、$a₂=2$、$a_{n+2}-6a_{n+1}+9a_n=0$
この動画を見る
次の条件によって定められる数列$a_n$の極限を求めよ。
(1) $a₁=0$、$a₂=1$、$3a_{n+2}=a_{n+1}+2a_n$
(2) $a₁=0$、$a₂=1$、$a_{n+2}-7a_{n+1}+10a_n=0$
(3) $a₁=1$、$a₂=2$、$a_{n+2}-6a_{n+1}+9a_n=0$
【高校化学】【ベンゼンの反応】ベンゼンの反応図に示したベンゼンの反応について、次の各問いに答えよ。(図は本編中) (1) A~Dにあてはまる有機化合物の示性式と名称を記せ。 (2) (ア)~(エ)に…

単元:
#化学#有機#有機化合物の特徴と構造#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベンゼンの反応図に示したベンゼンの反応について、次の各問いに答えよ。(図は本編中)
(1) A~Dにあてはまる有機化合物の示性式と名称を記せ。
(2) (ア)~(エ)にあてはまる反応名を記せ。
この動画を見る
ベンゼンの反応図に示したベンゼンの反応について、次の各問いに答えよ。(図は本編中)
(1) A~Dにあてはまる有機化合物の示性式と名称を記せ。
(2) (ア)~(エ)にあてはまる反応名を記せ。
【数Ⅲ】【積分とその応用】点Pの座標(x,y)が 3x=t³+6t², 3y=2t³-3t²(1)点Pが座標(27,9)を通るときの速度を求めよ(2)点Pが時刻0からaまでに通過する道のりLを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Pの座標(x,y)が、時刻の関数として次のように表されている。
3x=t³+6t², 3y=2t³-3t²
(1)点Pが座標(27,9)を通るときの速度を求めよ。
(2)点Pが時刻0からa(a>0)までに通過する道のりLを求めよ。
この動画を見る
点Pの座標(x,y)が、時刻の関数として次のように表されている。
3x=t³+6t², 3y=2t³-3t²
(1)点Pが座標(27,9)を通るときの速度を求めよ。
(2)点Pが時刻0からa(a>0)までに通過する道のりLを求めよ。
【数Ⅲ】【積分とその応用】t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。
この動画を見る
t秒後の速度が v=30-10t(m/s)となるように地上から真上に投げ上げられた物体は、何秒後に何mの高さまで上がって落ち始めるか。
【数Ⅲ】【積分とその応用】曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。
この動画を見る
曲線x=θcosθ、y=θsinθ(0≦θ≦2π)の長さは、曲線y=x²/2(0≦θ≦2π)の長さに等しいことを示せ。
【数Ⅲ】【積分とその応用】次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
この動画を見る
次の曲線の長さLを求めよ。ただし、θは媒介変数a,p,qは定数であり、a>0,0<q<π/2 を満たす。
(1) x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ) (0≦θ≦p)
(2) y=log(cosx) (0≦θ≦p)
【高校化学】【サリチル酸】サリチル酸の反応に関わる経路図について,各問いに答えよ。(図は本編中)(1) A, B にあてはまる化合物の構造式と物質名を記せ。(2) a,bにあてはまる…

単元:
#化学#有機#有機化合物の特徴と構造#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
サリチル酸の反応に関わる経路図について,各問いに答えよ。
(図は本編中)
(1) A, B にあてはまる化合物の構造式と物質名を記せ。
(2) a,bにあてはまる操作として,正しいものを選べ。
(ア) 水溶液にして、二酸化炭素を通じる。 (イ) 塩酸を加える (ウ)高温・高圧で二酸化炭素と反応させる
(3)次の化合物のうち、下の記述にあてはまるものをすべて選べ
(ア) サリチル酸 (イ) 化合物A (ウ) 化合物B
① 炭酸水素ナトリウム水溶液に、気体を発生しながら溶ける
② 塩化鉄(Ⅲ) 水溶液によって呈色する。
この動画を見る
サリチル酸の反応に関わる経路図について,各問いに答えよ。
(図は本編中)
(1) A, B にあてはまる化合物の構造式と物質名を記せ。
(2) a,bにあてはまる操作として,正しいものを選べ。
(ア) 水溶液にして、二酸化炭素を通じる。 (イ) 塩酸を加える (ウ)高温・高圧で二酸化炭素と反応させる
(3)次の化合物のうち、下の記述にあてはまるものをすべて選べ
(ア) サリチル酸 (イ) 化合物A (ウ) 化合物B
① 炭酸水素ナトリウム水溶液に、気体を発生しながら溶ける
② 塩化鉄(Ⅲ) 水溶液によって呈色する。
【数Ⅲ】【積分とその応用】半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きに動く2点P,QがPの速さはQの速さの2倍でAからBまで動くとき、△APQの面積の最大値を求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きにそれぞれ一定の速さで動く2点P,Qがある。Pの速さはQの速さの2倍で、PがAからBまで動くとき、△APQの面積の最大値を求めよ。また,その時の∠BOQの大きさを求めよ。
この動画を見る
半径がaである円Oの直径ABの両端AおよびBから出発して円Oの周上を同じ向きにそれぞれ一定の速さで動く2点P,Qがある。Pの速さはQの速さの2倍で、PがAからBまで動くとき、△APQの面積の最大値を求めよ。また,その時の∠BOQの大きさを求めよ。
【数Ⅲ】【積分とその応用】点Pが原点Oを中心とする半径rの円の周上を等速円運動OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
この動画を見る
点Pが,原点Oを中心とする半径rの円の周上を,等速円運動。OPが毎秒π/6ラジアンだけ回転するとき,点Pの速さと加速度の大きさを求めよ。ただし,Pは円周上の点(r,0)から出発するものとする。
【数Ⅲ】【積分とその応用】半径が10cm深さが20cmの直円錐形容器に毎秒3cm³の割合で静かに水を注ぐとき水の深さが6cmになった瞬間の水面の上昇する速さと水面の面積の増加する速さを求めよ。

単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
上面の半径が10cm,深さが20cmの直円錐形の容器が,その軸を鉛直にして固定されている。この容器に毎秒3cm³の割合で静かに水を注ぐとき,水の深さが6cmになった瞬間の,水面の上昇する速さと,水面の面積の増加する速さを求めよ。
この動画を見る
上面の半径が10cm,深さが20cmの直円錐形の容器が,その軸を鉛直にして固定されている。この容器に毎秒3cm³の割合で静かに水を注ぐとき,水の深さが6cmになった瞬間の,水面の上昇する速さと,水面の面積の増加する速さを求めよ。
【垂直抗力の大きさ】図のように、重さ9.0Nの物体Aと3.0 Nの物体Bが静止している。(1)~(4)のそれぞれにおいて、物体Aが水平面から受ける垂直抗力の大きさをNとする。Nをそれぞれ求めよ。…

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、重さ9.0Nの物体Aと3.0 Nの物体Bが静止している。(1)~(4)のそれぞれにおいて、物体Aが水平面から受ける垂直抗力の大きさをNとする。Nをそれぞれ求めよ。
この動画を見る
図のように、重さ9.0Nの物体Aと3.0 Nの物体Bが静止している。(1)~(4)のそれぞれにおいて、物体Aが水平面から受ける垂直抗力の大きさをNとする。Nをそれぞれ求めよ。
【数C】【平面上の曲線】中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。
この動画を見る
aを正の定数とする。中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。
【数C】【平面上の曲線】極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、l上の動点をPとする。極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。
この動画を見る
極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、l上の動点をPとする。極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。
【振り子のエネルギー】長さ0.40mの糸の先におもりをつけ、点Oからつるして振り子をつくった。糸がたるまないように、鉛直方向とのなす角が60°となる位置まで引き上げ、おもりを静かにはなす。点Oの真下…

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
長さ0.40mの糸の先におもりをつけ、点Oからつるして振り子をつくった。糸がたるまないように、鉛直方向とのなす角が60°となる位置まで引き上げ、おもりを静かにはなす。点Oの真下で0から0.20mの位置に釘がある。重力加速度の大きさを9.8とする。
(1) おもりが最下点に達したときの速さはいくらか。
(2)最下点を過ぎると糸が釘に引っかかり、釘を支点として振り子が振れる。鈴直方向と糸とのなす角が60°となるとき、おもりの速さはいくらか。
(3)おもりが最高点に達したとき、糸と鉛直方向とのなす角はいくらか。
この動画を見る
長さ0.40mの糸の先におもりをつけ、点Oからつるして振り子をつくった。糸がたるまないように、鉛直方向とのなす角が60°となる位置まで引き上げ、おもりを静かにはなす。点Oの真下で0から0.20mの位置に釘がある。重力加速度の大きさを9.8とする。
(1) おもりが最下点に達したときの速さはいくらか。
(2)最下点を過ぎると糸が釘に引っかかり、釘を支点として振り子が振れる。鈴直方向と糸とのなす角が60°となるとき、おもりの速さはいくらか。
(3)おもりが最高点に達したとき、糸と鉛直方向とのなす角はいくらか。
【数C】【ベクトルの内積】ベクトルa=(1,1),b=(1,-1),c=(1,2)に対して,(xa+yb)⊥c,|xa+yb|=2√5であるように,実数x,yの値を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
この動画を見る
ベクトル $\vec{a}=(1,1), \vec{b} = (1,-1), \vec{c} = (1,2)$ に対して、
$(x \vec{a} + y \vec{b}) \perp \vec{c}, |x \vec{a}+ y \vec{b}| = 2 \sqrt{5}$ であるように、
実数$x,y$ の値を定めよ。
【数C】【平面上の曲線】eは正の定数とする。極座標が(3,0)である点Aを通り、OXに垂直な直線をlとする。極Oと直線lからの比がe:1である点Pの極方程式を求めよ。(1)e=1(2)e=1/2

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
eは正の定数とする。極座標が(3,0)である点Aを通り、始線OXに垂直な直線をlとする。極Oと直線lからの距離の比がe:1である点Pの軌跡を表す極方程式を、次の各場合について求めよ。
(1)e=1
(2)e=1/2
この動画を見る
eは正の定数とする。極座標が(3,0)である点Aを通り、始線OXに垂直な直線をlとする。極Oと直線lからの距離の比がe:1である点Pの軌跡を表す極方程式を、次の各場合について求めよ。
(1)e=1
(2)e=1/2
【数C】【平面上の曲線】次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。(1)r=1/√2+cosθ(2)r=3/1+2cosθ(3)r=2/1+cosθ

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。
直交座標の方程式に直して答えよ。
(1)$r=\dfrac{1}{\sqrt{2}+cosθ}$
(2)$r=\dfrac{3}{1+2cosθ}$
(3)$r=\dfrac{2}{1+cosθ}$
この動画を見る
次の極方程式はどのような曲線を表すか。
直交座標の方程式に直して答えよ。
(1)$r=\dfrac{1}{\sqrt{2}+cosθ}$
(2)$r=\dfrac{3}{1+2cosθ}$
(3)$r=\dfrac{2}{1+cosθ}$
滑車につるした物体の運動 図のように、なめらかにまわる軽い滑車に軽い糸を通し、糸の両端に質量3.0kgの物体Aと質量4.0kgの物体Bをつけて、手で支えている。その後、静かに手をはなした。重力加速度…

単元:
#物理#力学#理科(高校生)
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
図のように、なめらかにまわる軽い滑車に軽い糸を通し、糸の両端に質量3.0kgの物体Aと質量4.0kgの物体Bをつけて、手で支えている。その後、静かに手をはなした。重力加速度の大きさを9.8とし、糸は十分に長いものとして、次の各問に答えよ。
この動画を見る
図のように、なめらかにまわる軽い滑車に軽い糸を通し、糸の両端に質量3.0kgの物体Aと質量4.0kgの物体Bをつけて、手で支えている。その後、静かに手をはなした。重力加速度の大きさを9.8とし、糸は十分に長いものとして、次の各問に答えよ。
【数C】【平面上の曲線】4点A(a,0)B(0,b)C(-a,0)D(0,-8)(a>0,b>0)を頂点とするひし形ABCDがある。PA・PC=PB・PDを満たす点Pの軌跡を求めよ。

単元:
#平面上の曲線#2次曲線#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
この動画を見る
$4$ 点 $\mathrm{ A }(a, \ 0),\ \mathrm{ B }(0, \ b),\ \mathrm{ C }(-a, \ 0),\ \mathrm{ D }(0, \ -b) \ (a \gt 0, \ b \gt 0)$
を頂点とするひし形 $\mathrm{ABCD}$ がある。
$\mathrm{PA \cdot PC } = \mathrm{PB \cdot PD}$ を満たす点$\mathrm{P}$ の軌跡を求めよ。
【数C】【平面上の曲線】直角双曲線x²-y²=a² (a>0)上の点Pから、2つの漸近線に垂線PQ,PRを下ろす。このとき、PQ・PRは一定であることを証明せよ

単元:
#平面上の曲線#2次曲線#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
この動画を見る
直角双曲線 $x^2+y^2=a^2 \ (a \gt 0)$ 上の点$\mathrm{P}$ から、
$2$ つの漸近線に垂線$\mathrm{PQ,PR}$ を下ろす。
このとき、 $\mathrm{PQ \cdot PR}$ は一定であることを証明せよ。
【光電効果】金属に、光をあてた。(1)この光の光子1個のエネルギーは?(2)金属から飛び出す光電子の運動エネルギーの最大値は?(3)光の強さだけを1/2倍にした。光電子の運動エネルギーの最大値は?

単元:
#物理#理科(高校生)#原子
教材:
#中高教材#セミナー物理基礎・物理
指導講師:
理数個別チャンネル
問題文全文(内容文):
仕事関数3.8✕10^-19Jの金属に、波長3.3✕10^-3mの光をあてた。真空中の光速を3.0x10^8m/s,プランク定数を6.6✕10^-34J・Sとして、次の各問に答えよ。
(1)この光の光子1個のエネルギーはいくらか。
(2)金属から飛び出す光電子の運動エネルギーの最大値はいくらか。
(3)光の強さだけを1/2倍にした。光電子の運動エネルギーの最大値はいくらになるか。
この動画を見る
仕事関数3.8✕10^-19Jの金属に、波長3.3✕10^-3mの光をあてた。真空中の光速を3.0x10^8m/s,プランク定数を6.6✕10^-34J・Sとして、次の各問に答えよ。
(1)この光の光子1個のエネルギーはいくらか。
(2)金属から飛び出す光電子の運動エネルギーの最大値はいくらか。
(3)光の強さだけを1/2倍にした。光電子の運動エネルギーの最大値はいくらになるか。
【油脂の構成】構成脂肪酸がパルミチン酸C₁₅H₃₁COOH (分子量256)およびリノール酸C₁₇H₃₁COOH (分子量280) のみである油脂がある。 この油脂における構成脂肪酸の比は、パルミチ…

単元:
#化学#有機#有機化合物の特徴と構造#理科(高校生)
教材:
#中高教材#セミナー化学基礎・化学
指導講師:
理数個別チャンネル
問題文全文(内容文):
構成脂肪酸がパルミチン酸C₁₅H₃₁COOH (分子量256)および
リノール酸C₁₇H₃₁COOH (分子量280) のみである油脂がある。
この油脂における構成脂肪酸の比は、パルミチン酸1.0molに対して
リノール酸1.5molである。 次の各問いに答えよ。
(1)この油脂の平均分子量を整数値で求めよ。
(2)この油脂 100gを水酸化ナトリウムを用いてけん化するとき,必要な水酸化ナトリ
ウムの質量は何gか。 (1) で求めた整数値を用いて計算せよ。
(3)この油脂 100gにヨウ素を付加させるとき,必要なヨウ素の質量は何gか。 (1) で
求めた整数値を用いて計算せよ。
(4) パルミチン酸1分子とリノール酸2分子を含む油脂の構造異性体は、 いくつ存在
するか。また,その中に不斉炭素原子をもつものは,いくつあるか。
この動画を見る
構成脂肪酸がパルミチン酸C₁₅H₃₁COOH (分子量256)および
リノール酸C₁₇H₃₁COOH (分子量280) のみである油脂がある。
この油脂における構成脂肪酸の比は、パルミチン酸1.0molに対して
リノール酸1.5molである。 次の各問いに答えよ。
(1)この油脂の平均分子量を整数値で求めよ。
(2)この油脂 100gを水酸化ナトリウムを用いてけん化するとき,必要な水酸化ナトリ
ウムの質量は何gか。 (1) で求めた整数値を用いて計算せよ。
(3)この油脂 100gにヨウ素を付加させるとき,必要なヨウ素の質量は何gか。 (1) で
求めた整数値を用いて計算せよ。
(4) パルミチン酸1分子とリノール酸2分子を含む油脂の構造異性体は、 いくつ存在
するか。また,その中に不斉炭素原子をもつものは,いくつあるか。
【数C】【平面上の曲線】楕円x²/8+y²/4=1上の点(2,√2) を通り、この楕円の焦点を焦点とする双曲線の方程式を求めよ。また、双曲線の漸近線の方程式も求めよ。

単元:
#平面上の曲線#2次曲線#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{8}+\frac{y^2}{4}=1$ 上の点 $(2,\ \sqrt{2})$を通り、
この楕円の焦点を焦点とする双曲線の方程式を求めよ。
また、双曲線の漸近線の方程式も求めよ。
この動画を見る
楕円 $\displaystyle \frac{x^2}{8}+\frac{y^2}{4}=1$ 上の点 $(2,\ \sqrt{2})$を通り、
この楕円の焦点を焦点とする双曲線の方程式を求めよ。
また、双曲線の漸近線の方程式も求めよ。
【数C】【平面上の曲線】x²/a²-y²/b²=1の焦点と漸近線の距離を求めよ

単元:
#平面上の曲線#2次曲線#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
双曲線 $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$\ (a \gt 0,\ b \gt 0)$
の焦点と漸近線の距離を求めよ。
この動画を見る
双曲線 $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$\ (a \gt 0,\ b \gt 0)$
の焦点と漸近線の距離を求めよ。
【数C】【ベクトルの内積】a・b= b・c=c・a=-2,a+b+c=0とする。(1) a , b , c の大きさを求めよ。(2) a と b のなす角θを求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
この動画を見る
$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = -2$ ,
$ \vec{a} + \vec{b} + \vec{c} = \vec{0}$とする。
(1) $\vec{a} , \vec{b} , \vec{c}$ の大きさを求めよ。
(2) $\vec{a}$ と $\vec{b}$ のなす角 $\theta$ を求めよ。
【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
この動画を見る
$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
この動画を見る
ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
【数C】【ベクトルの内積】2つのベクトルx, yが2x-y=(0,4), 2|x|=|y|, xy=6を満たすとき, x, yを求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
この動画を見る
2つのベクトル$\vec{x}, \vec{y}$が$2\vec{x}-\vec{y}=(0,4)$,
$2|\vec{x}|=|\vec{y}|, \vec{x}\cdot\vec{y}=6$を満たすとき,
$\vec{x}, \vec{y}$を求めよ。
【数C】【ベクトルの内積】|a|=3,|b|=4,|a-b|=3のとき,|a+tb|を最小にする実数tの値とその最小値を求めよ。

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトル$|\vec{a}|=3$、$|\vec{b}|=4$、$|\vec{a}-\vec{b}|=3$のとき、
$|\vec{a}+t\vec{b}|$を最小にする実数tの値とその最小値を求めよ。
この動画を見る
ベクトル$|\vec{a}|=3$、$|\vec{b}|=4$、$|\vec{a}-\vec{b}|=3$のとき、
$|\vec{a}+t\vec{b}|$を最小にする実数tの値とその最小値を求めよ。
