福田次郎 - 質問解決D.B.(データベース) - Page 36

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。

(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。

(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[1]。式の値の計算問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [1] 実数a,b,cが$a+b+c=1\ldots①$および$a^2+b^2+c^2=13\ldots②$を満たしているとする。
(1)$(a+b+c)^2$を展開した式において、①と②を用いると$ab+bc+ca=\boxed{アイ}$
であることが分かる。
よって、$(a-b)^2+(b-c)^2+(c-a)^2=\boxed{ウエ}$である。

(2)$a-b=2\sqrt5$の場合に、$(a-b)(b-c)(c-a)$の値を求めてみよう。
$b-c=x, c-a=y$とおくと、$x+y=\boxed{オカ}\sqrt5$である。また(1)の計算から
$x^2+y^2=\boxed{キク}$が成り立つ。これらより
$(a-b)(b-c)(c-a)=\boxed{ケ}\sqrt5$ である。

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。

$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。

(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。
都道府県別に、就業者数に対する各産業に就業する人数の割合を、
各産業の「就業者数割合」と呼ぶことにする。

(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ
ぞれを時点という)における都道府県別の三つの産業の就業者
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、
それぞれ上から第1次産業、第2次産業、第3次産業である。
次の①~⑤のうち、図1から読み取れることとして正しくない
ものは$\boxed{タ}$と$\boxed{チ}$である。

タ、チの解答群

⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは
後の時点になるにしたがって減少している。
① 第1次産業の就業者数割合について、左側のひげの長さと右側
のひげの長さを比較すると、どの時点においても左側の方が長い。
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点
になるにしたがって減少している。
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした
がって減少している。
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした
がって増加している。
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。

(2)(1)で取り上げた8時点の中から5時点を取り出して考える。
各時点における都道府県別の、第1次産業と第3次産業の就業
者数割合のヒストグラムを一つのグラフにまとめてかいたもの
が、右の5つのグラフである。それぞれの右側の網掛けした
ヒストグラムが第3次産業のものである。なお、ヒストグラム
の各階級の区間は、左側の数値を含み、右側の数値を含まない。
・1985年度におけるグラフは$\boxed{ツ}$である。
・1995年度におけるグラフは$\boxed{テ}$である。

(※$\boxed{ ツ}, \boxed{テ}$の選択肢は動画参照)

(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合
の散布図を作成した。右の図2の散布
図群は、左から順に1975年度における第1次産業(横軸)と
第2次産業(縦軸)の散布図、第2次産業(横軸)
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。
下の$ (\textrm{I})(\textrm{II})(\textrm{III})$ は1975年度を基準にしたときの、
2015年度の変化を記述したものである。ただし、ここで
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。

$(\textrm{I})$ 都道府県別の第1次産業の就業者数割合と第2次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{II})$ 都道府県別の第2次産業の就業者数割合と第3次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{III})$ 都道府県別の第3次産業の就業者数割合と第1次産業
の就業者数割合の間の相関は強くなった。
正誤の組み合わせとして正しいのは$\boxed{ト}$である。
(※$\boxed{ト}$の選択肢は動画参照)

(4) 各都道府県の就業者数割合の内訳として男女別の
就業者数も発表されている。そこで、就業者数に対する
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、
「女性の就業者数割合」と呼ぶことにし、
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における
都道府県別の、第1次産業の就業者数割合(横軸)、
男性の就業者数割合(縦軸)の散布図である。
各都道府県の、男性の就業者数と女性の就業者数を
合計すると就業者数の全体になることに注意すると、
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、
女性の就業者数割合(縦軸)の 散布図は$\boxed{ナ}$である。
ナについては①~③のうちから 最も適当なものを一つ選べ。

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。

$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$

①、②の2次関数のグラフには次の共通点がある。

共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。

次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。

$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$

a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。

直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。

a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。

③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)

2022共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,

$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$

(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。

$\boxed{ソ}$の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots①  g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$  
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$

$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$    ①$-f(x)$    ②$g(x)$    ③$-g(x)$

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$

(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

$\boxed{ネ}$の解答群
⓪$(\textrm{A})$   ①$(\textrm{B})$   ②$(\textrm{C})$   ③$(\textrm{D})$

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。

(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。

(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$

$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる

(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。

$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$

(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。

$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$   ①$=$   ②$\gt$

$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$   ①$\triangle AID$   ②$\triangle BEF$   ③$\triangle CGH$

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。

$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。

(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。

$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$

と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$

を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。

$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。

$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1   ①1   ②-p   ③p   \\
④1-p   ⑤1+p   ⑥-p^2   ⑦p^2   ⑧1-p^2   \\
⑨1+p^2   ⓐ(1-p)^2   ⓑ(1+p^2)   \\

$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$    ①$\alpha$    ②$\frac{\pi}{2}$

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[1]。2次方程式の解に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1]cを正の定数とする。xの2次方程式$2x^2+(4c-3)x+2c^2-c-11=0 \ldots①$
について考える。
(1)$c=1$のとき、①の左辺を因数分解すると$(\boxed{ア}\ x+\boxed{イ})(x-\boxed{ウ})$であるから、
①の解は$x=-\frac{\boxed{イ}}{\boxed{ア}}, \boxed{ウ}$である。

(2)$c=2$のとき、①の解は$x=\frac{-\ \boxed{エ}±\sqrt{\boxed{オカ}}}{\boxed{キ}}$ であり、大きい方の解を$\alpha$とすると
$\frac{5}{\alpha}=\frac{\boxed{ク}+\sqrt{\boxed{ケコ}}}{\boxed{サ}}$である。また、$m \lt \frac{5}{\alpha} \lt m+1$を満たす整数$m$は$\boxed{シ}$である。

(3)太郎さんと花子さんは、①の解について考察している。
太郎:①の解はcの値によって、ともに有理数である場合もあれば、ともに無理数
である場合もあるね。cがどのような値のときに、解は有理数になるのかな。
花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。

①の解が異なる2つの有理数であるような正の整数cの個数は$\boxed{ス}$個である。

2021共通テスト数学過去問
この動画を見る 

福田のわかった数学〜高校2年生091〜指数対数(4)指数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(4) 指数関数の最大最小
最小値とそのときのxを求めよ。
(1)$y=2^{2+x}+2^{5-x}$ (2)$y=4^x-2^{x+2}$
(3)$y=4^x+4^{-x}-2^x-2^{-x}$     
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。

東京大学過去問
この動画を見る 

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生090〜指数対数(3)指数法則を使う計算(3)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(3) 指数法則(3)
(1)$a^{2x}=5$のとき$\frac{a^x-a^{-x}}{a^x+a^{-x}}, \frac{a^{3x}-a^{-3x}}{a^{3x}+a^{-3x}}$を求めよ。
(2)$a^{3x}-a^{-3x}=14$のとき$a^x-a^{-x}, a^x+a^{-x}$を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生090〜確率(10)反復試行の確率(4)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(10) 反復試行(4)
正六角形ABCDEFの頂点Aに石を置いて、コインを投げて
表が出れば2、裏が出れば1、石を時計周りに動かし、最初に
Aに戻った時を上がりとする。次の確率を求めよ。
(1)ちょうど1周で上がり  (2)ちょうど2周で上がり
この動画を見る 

福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(2) 水の問題(1)
$y=x^2$ をy軸の周りに回転させてできる容器に、
毎秒$1cm^3$の割合で水を入れる。水面の半径が
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生089〜指数対数(2)指数法則を使う計算(2)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(2) 指数法則(2)
(1)$\sqrt[3]{54}×\sqrt7×\sqrt[4]{14}×\frac{1}{\sqrt[4]{490}}×\sqrt[4]{10}×\frac{1}{\sqrt[4]7}×\frac{1}{\sqrt[12]2}$
(2)$\sqrt[3]{54}+\frac{3}{2}\sqrt[6]4+\sqrt[3]{-\frac{1}{4}}$

$\frac{1}{\sqrt[3]2+1}$の分母を有理化せよ。
この動画を見る 

福田のわかった数学〜高校1年生089〜確率(9)反復試行の確率(3)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(9) 反復試行(3)
点Pをxy平面上の原点におき、次の規則で動かす。
さいころを1回振るごとに
1,2,3の目が出たらx軸方向へ1平行移動
4,5の目が出たらy軸方向へ1平行移動
6の目が出たらx軸方向へ1、y軸方向へ1平行移動
さいころを6回振って点Pが(5,3)に位置する確率を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系106〜変化率(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
この動画を見る 

福田のわかった数学〜高校2年生088〜指数対数(1)指数法則を使う計算(1)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 指数対数(1) 指数法則(1)
$\frac{(x^{\frac{p}{a}}y^{-\frac{b}{q}}z^{\frac{2}{aq}})^{aq}}{(x^{-\frac{a}{p}}y^{\frac{q}{b}})^{bp}}÷\left\{(\sqrt{\frac{x}{y}})^b\sqrt[a]z\right\}^{2a}$
を計算せよ。
この動画を見る 

福田のわかった数学〜高校1年生088〜確率(8)反復試行の確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(2)
AとBが先に4勝したほうを勝ちとする試合をする。
1回の試合でAが勝つ確率をpとして引き分けはないものとする。
(1)6試合目でAが勝つ確率を求めよ。
(2)Aが勝つ確率を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生087〜三角関数(26)2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(26) 2変数関数の最大最小
$\alpha,\beta$は0以上$2\pi$よりこの範囲を動く。
$\sqrt3\sin\beta-\cos\alpha\cos\beta$
の最大値最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。 
この動画を見る 

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生086〜三角関数(25)重要な変形(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(25) 重要な変形(3)
外接円の半径が1の$\triangle ABC$がある。
この三角形の内接円の半径は$\frac{1}{2}$以下であることを示せ。
この動画を見る 

福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(6) じゃんけん(2)
4人でじゃんけんをして負けたもの
から抜けていく。3回で1人の勝者
が決まる確率を求めよ。 
この動画を見る 

福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(1)
$a^x \geqq x$
が任意の正の実数xに対して成り立つような
正の定数aの値の範囲を求めよ。  
この動画を見る 

福田のわかった数学〜高校2年生085〜三角関数(24)重要な変形(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(24) 重要な変形(2)
$\triangle ABC$において
$\cos A+\cos B+\cos C=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$
を証明せよ。 
この動画を見る 

福田のわかった数学〜高校1年生085〜確率(5)じゃんけんの確率(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) じゃんけん(1)
n人でじゃんけんを1回する。 $(n \geqq 3)$
(1)r人が勝つ確率を求めよ。 $(0 \lt r \lt n)$
(2)あいこになる確率を求めよ。
この動画を見る 
PAGE TOP