問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 三角関数(26) 2変数関数の最大最小\\
\alpha,\betaは0以上2\piよりこの範囲を動く。\\
\sqrt3\sin\beta-\cos\alpha\cos\beta\\
の最大値最小値を求めよ。
\end{eqnarray}
投稿日:2021.12.15