数学を数楽に
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
無限等比級数
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
この動画を見る
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
生徒に解かせると勘違いして間違える問題です。平方根の小数部分 中央大附属
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt {15}$の小数部分と$6-\sqrt{15}$の小数部分との積を求めよ。
中央大学附属高校
この動画を見る
$\sqrt {15}$の小数部分と$6-\sqrt{15}$の小数部分との積を求めよ。
中央大学附属高校
ルートのかけ算
単元:
#数学(中学生)#中3数学#平方根
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{99} \times \sqrt{110} \times \sqrt{30}$
この動画を見る
$\sqrt{99} \times \sqrt{110} \times \sqrt{30}$
面積二等分する直線を選べ!!大阪府
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形ABCDを面積の等しい2つの図形に分けるものを全て選べ。
(ア)直線AC
(イ)$\angle ABC$の二等分線
(ウ)辺BCの垂直二等分線
(エ)辺DAの中点とCを通る直線
*図は動画内参照
大阪府
この動画を見る
長方形ABCDを面積の等しい2つの図形に分けるものを全て選べ。
(ア)直線AC
(イ)$\angle ABC$の二等分線
(ウ)辺BCの垂直二等分線
(エ)辺DAの中点とCを通る直線
*図は動画内参照
大阪府
素数並べてみた
高校入試だけど指数
ルートを外せ!!2023 受験生は概要欄を見よ
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{2023n}$が整数となる最小の整数n=?
この動画を見る
$\sqrt{2023n}$が整数となる最小の整数n=?
高さが等しい面積比
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
高さが等しい図形の面積比
A:B:C=
*図は動画内参照
この動画を見る
高さが等しい図形の面積比
A:B:C=
*図は動画内参照
式の変形 これ知らない大学受験生は落ちます
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2+b^2 =$
$a^3+b^3 =$
$a^2+b^2+c^2 =$
$a^3+b^3+c^3 =$
この動画を見る
$a^2+b^2 =$
$a^3+b^3 =$
$a^2+b^2+c^2 =$
$a^3+b^3+c^3 =$
知ってなきゃ解けない? 分母の有理化 開成高校 今年の反省 来年の抱負
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
分母を有理化せよ
$\frac{1}{1+\sqrt 2 + \sqrt 3}$
開成高等学校
この動画を見る
分母を有理化せよ
$\frac{1}{1+\sqrt 2 + \sqrt 3}$
開成高等学校
どっちが大きい?
球が出てきただけでビビるなよ。海城高校
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径$\sqrt 6$の球に内接する立方体の体積=?
*図は動画内参照
海城高等学校
この動画を見る
半径$\sqrt 6$の球に内接する立方体の体積=?
*図は動画内参照
海城高等学校
√の中に√入れたくないよね。式の値 巣鴨高校
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
この動画を見る
$a=\sqrt 6 +\sqrt 2,b=\sqrt 6 - \sqrt 2$
$\frac{\sqrt a +\sqrt b}{\sqrt a - \sqrt b} = ?$
巣鴨高等学校
斜線部分の面積を求めよ 洛南高校
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積を求めよ。
洛南高等学校
この動画を見る
斜線部の面積を求めよ。
洛南高等学校
やっぱり指数が好き
気付けば、そして知っていれば一瞬!!円
決め手は、和と差の○
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{\sqrt{11}+1}{\sqrt 3 +1}=a$
$\frac{\sqrt{11}-1}{\sqrt 3 -1}$をaを用いて表せ。
この動画を見る
$\frac{\sqrt{11}+1}{\sqrt 3 +1}=a$
$\frac{\sqrt{11}-1}{\sqrt 3 -1}$をaを用いて表せ。
面積比やら三平方の定理やら。。良問!!慶應志木
単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積4等分
$△ABC=4 \sqrt 3 +4$
x=?
*図は動画内参照
慶應義塾志木高等学校(改)
この動画を見る
面積4等分
$△ABC=4 \sqrt 3 +4$
x=?
*図は動画内参照
慶應義塾志木高等学校(改)
式の値 灘高校
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b+c=3,a^2+b^2+c^2 = 5$
$a^2+b^2c+c^2a+ab^2+bc^2+ca^2+3abc = ?$
灘高等学校
この動画を見る
$a+b+c=3,a^2+b^2+c^2 = 5$
$a^2+b^2c+c^2a+ab^2+bc^2+ca^2+3abc = ?$
灘高等学校
面積から辺への引越し 慶應志木
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
xをy,zで表せ
*図は動画内参照
慶應義塾志木高等学校
この動画を見る
xをy,zで表せ
*図は動画内参照
慶應義塾志木高等学校
キレイに解けるよ√の計算
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{9999^2 + 9999+10000} =?$
この動画を見る
$\sqrt{9999^2 + 9999+10000} =?$
角度を求めよ!!灘中
中学入試でも二つの円!!開成中
中学生の解き方 高校生の解き方
単元:
#算数(中学受験)#数A#場合の数と確率#場合の数#場合の数#場合の数#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
区別のつかない5個のボールがある。これらすべてをA,B,Cの3人に配るとき何通りあるか?
(ただし1個ももらえない人はいない)
西南学院高等学校
この動画を見る
区別のつかない5個のボールがある。これらすべてをA,B,Cの3人に配るとき何通りあるか?
(ただし1個ももらえない人はいない)
西南学院高等学校
文字があると中学生は困ってしまうよね。二次方程式の応用。 2通りで解説 芝浦工大柏
単元:
#数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a>0とする。
xについての二次方程式
$x^2+2ax-a^2=0$の解が$x= - a ± 10 \sqrt 2$のときa=?
芝浦工業大学柏高等学校
この動画を見る
a>0とする。
xについての二次方程式
$x^2+2ax-a^2=0$の解が$x= - a ± 10 \sqrt 2$のときa=?
芝浦工業大学柏高等学校
いろいろな四角形 暁
単元:
#数学(中学生)#中2数学#三角形と四角形
指導講師:
数学を数楽に
問題文全文(内容文):
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。
暁高等学校
この動画を見る
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。
暁高等学校
大学入試じゃね? 灘高校 小数部分
単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正の数xの小数部分を
$(x - \langle x \rangle)^2 + (3 \langle x \rangle -1)^2 = 6$のとき
$x - \langle x \rangle = ? ,x=?$
灘高等学校
この動画を見る
正の数xの小数部分を
$(x - \langle x \rangle)^2 + (3 \langle x \rangle -1)^2 = 6$のとき
$x - \langle x \rangle = ? ,x=?$
灘高等学校
正方形を作図せよ 長崎県
高校入試だけどもガウス記号 大阪星光学院
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?
大阪星光学院高等学校
この動画を見る
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?
大阪星光学院高等学校
知っていれば一瞬。傍接円と三角形の周の長さ 清風南海高校
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△DEFの周の長さは?
*図は動画内参照
清風南海高等学校
この動画を見る
△DEFの周の長さは?
*図は動画内参照
清風南海高等学校