いろいろな計算
【受験算数】小数・分数:⑧大きさ比べ
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他#約数・倍数を利用する問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。
大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
この動画を見る
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。
大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
【受験算数】小数・分数:⑧単位分数の和
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
この動画を見る
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
【受験算数】小数・分数:⑦循環小数応用
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.36363636…
② 0.040740740740…
③ 0.481818181
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{1}{9}+\frac{23}{99}$
② $\displaystyle \frac{2}{90}+\frac{34}{99}$
(3)$\displaystyle \frac{150}{1111}$を小数て表したとき、小数第30位の数は何ですか。
大問2
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.25252525…
② 0.518518518…
③ 0.216161616…
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{2}{9}+\frac{35}{99}$
② $\displaystyle \frac{5}{90}+\frac{21}{999}$
(3) $\displaystyle \frac{13}{37}$を小数で表したとき、小数第二位の数は何ですか。
この動画を見る
大問1
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.36363636…
② 0.040740740740…
③ 0.481818181
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{1}{9}+\frac{23}{99}$
② $\displaystyle \frac{2}{90}+\frac{34}{99}$
(3)$\displaystyle \frac{150}{1111}$を小数て表したとき、小数第30位の数は何ですか。
大問2
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.25252525…
② 0.518518518…
③ 0.216161616…
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{2}{9}+\frac{35}{99}$
② $\displaystyle \frac{5}{90}+\frac{21}{999}$
(3) $\displaystyle \frac{13}{37}$を小数で表したとき、小数第二位の数は何ですか。
これ一瞬で出せる?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ一瞬で出せる?
【問題文】
2468-1753+4682-3175+6824-5317+8246-7531
この動画を見る
これ一瞬で出せる?
【問題文】
2468-1753+4682-3175+6824-5317+8246-7531
通分してはいけない問題
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
「通分してはいけない問題」について解説しています。
※問題文は動画内参照
この動画を見る
「通分してはいけない問題」について解説しています。
※問題文は動画内参照
これ分かる?
単元:
#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これ分かる?
【問題文】
6×9=
9×9=
42×99=
70×99=
321×999=
この動画を見る
これ分かる?
【問題文】
6×9=
9×9=
42×99=
70×99=
321×999=
新しい計算方法を見つけました
単元:
#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
新しい計算方法を見つけました
【問題文】
6×9=
9×9=
42×99=
70×99=
321×999=
この動画を見る
新しい計算方法を見つけました
【問題文】
6×9=
9×9=
42×99=
70×99=
321×999=
これできる?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
これできる?
【問題文】
(975+319+753+197+531)÷5
この動画を見る
これできる?
【問題文】
(975+319+753+197+531)÷5
解法が気持ちいい中学入試の問題
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
解法が気持ちいい中学入試の問題
【問題文】
(975+319+753+197+531)÷5
この動画を見る
解法が気持ちいい中学入試の問題
【問題文】
(975+319+753+197+531)÷5
あなたはどの道を通りますか?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#文章題
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
あなたはどの道を通りますか?
【問題文】
かおりさんの家から学校までは、㋐~㋒の3つの道があります。
あなたなら、どの道を通りますか。
1つえらび、そのわけを書きましょう。
※図は動画内参照
この動画を見る
あなたはどの道を通りますか?
【問題文】
かおりさんの家から学校までは、㋐~㋒の3つの道があります。
あなたなら、どの道を通りますか。
1つえらび、そのわけを書きましょう。
※図は動画内参照
福田のおもしろ数学167〜長方形の残りの部分の面積
1億万円ってなんぼ?
9の段が分かんないです
インド式どんな計算?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
中国とインドの計算の違い
インド式の90台同士のかけ算の解説動画です
$97 \times 95=??$
この動画を見る
中国とインドの計算の違い
インド式の90台同士のかけ算の解説動画です
$97 \times 95=??$
計算問題早慶戦②2024年(慶応義塾中vs早稲田実業中)個別指導塾講師歴20年のプロ解説
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#慶應義塾中等部#早稲田実業中等部
指導講師:
重吉
問題文全文(内容文):
【2024年慶応義塾中等部】
$(2.88 \times 7.43+2.57 \times 1.44 \div 0.5)\div \displaystyle \frac{㋐}{㋑}=1.2 \times 56)$
$(2.88 \times 7.43+2.57 \times 1.44 \div □)\div \displaystyle \frac{㋐}{㋑}=□ \times 56)$
$(2.88 \times 7.43+2.57 \times 1.44 \times □)\div \displaystyle \frac{㋐}{㋑}=□ \times 56)$
$(2.88 \times 7.43+2.57 \times □)\div \displaystyle \frac{㋐}{㋑}=□)$
$(2.88 \times (□+□)\div \displaystyle \frac{㋐}{㋑}=□)$
$□ \times □ \div \displaystyle \frac{㋐}{㋑}=□$
この動画を見る
【2024年慶応義塾中等部】
$(2.88 \times 7.43+2.57 \times 1.44 \div 0.5)\div \displaystyle \frac{㋐}{㋑}=1.2 \times 56)$
$(2.88 \times 7.43+2.57 \times 1.44 \div □)\div \displaystyle \frac{㋐}{㋑}=□ \times 56)$
$(2.88 \times 7.43+2.57 \times 1.44 \times □)\div \displaystyle \frac{㋐}{㋑}=□ \times 56)$
$(2.88 \times 7.43+2.57 \times □)\div \displaystyle \frac{㋐}{㋑}=□)$
$(2.88 \times (□+□)\div \displaystyle \frac{㋐}{㋑}=□)$
$□ \times □ \div \displaystyle \frac{㋐}{㋑}=□$
計算問題早慶戦① 2024年「早稲田中vs慶応義塾中」個別指導塾講師歴20年のプロ解説
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#早稲田中学#慶應義塾中等部
指導講師:
重吉
問題文全文(内容文):
【2024年早稲田中】
次の計算をし、約分できない分数で答えなさい。
$\displaystyle \frac{5}{2 \times 3}+\displaystyle \frac{11}{3 \times 4}+\displaystyle \frac{19}{4 \times 5}+\displaystyle \frac{29}{5 \times 6}$
=分数+分数+分数+分数
=(□-分数)+(□-分数)+(□-分数)+(□-分数)
=□$\times$□-(分数+分数+分数+分数)
この動画を見る
【2024年早稲田中】
次の計算をし、約分できない分数で答えなさい。
$\displaystyle \frac{5}{2 \times 3}+\displaystyle \frac{11}{3 \times 4}+\displaystyle \frac{19}{4 \times 5}+\displaystyle \frac{29}{5 \times 6}$
=分数+分数+分数+分数
=(□-分数)+(□-分数)+(□-分数)+(□-分数)
=□$\times$□-(分数+分数+分数+分数)
超難関男子中(灘、麻布、聖光学院)「2024年計算問題」個別指導塾講師歴20年のプロ解説
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#聖光学院中学#灘中学校#麻布中学
指導講師:
重吉
問題文全文(内容文):
【2024年灘中(1日目))】
$1 \div ${$ \displaystyle \frac{1}{9} -1 \div (35\times35+32\times32) $}$=9+\displaystyle \frac{81}{□}$
=$1\div(□-\displaystyle \frac{□}{□\times□+□\times□})$
=$1\div(□-\displaystyle \frac{□}{□+□})$
=$1\div(□-\displaystyle \frac{□}{□})$
=$1\div(\displaystyle \frac{□}{□\times□}-\displaystyle \frac{□}{□\times□})$
=$1\div(\displaystyle \frac{□}{□\times□}=\displaystyle \frac{□\times□}{□})$
この動画を見る
【2024年灘中(1日目))】
$1 \div ${$ \displaystyle \frac{1}{9} -1 \div (35\times35+32\times32) $}$=9+\displaystyle \frac{81}{□}$
=$1\div(□-\displaystyle \frac{□}{□\times□+□\times□})$
=$1\div(□-\displaystyle \frac{□}{□+□})$
=$1\div(□-\displaystyle \frac{□}{□})$
=$1\div(\displaystyle \frac{□}{□\times□}-\displaystyle \frac{□}{□\times□})$
=$1\div(\displaystyle \frac{□}{□\times□}=\displaystyle \frac{□\times□}{□})$
落とせば合格赤信号!2024女子御三家(桜蔭、女子学院、雙葉)計算問題5題」個別指導塾講師歴20年のプロ解説
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#女子学院中学#桜蔭中学#雙葉中学
指導講師:
重吉
問題文全文(内容文):
【2024年桜蔭中】
$16- ${$ 7 \displaystyle \frac{1}{3} \times 2.2-(5.7-4\displaystyle \frac{1}{6})\div 3\displaystyle \frac{2}{7} $}$=□$
$16-${$ \displaystyle \frac{□}{□} \times \displaystyle \frac{□}{□}-(\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□})\div \displaystyle \frac{□}{□}$ }
$=16-${$ \displaystyle \frac{□}{□} -(\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□})\times \displaystyle \frac{□}{□}$ }
$=16- (\displaystyle \frac{□}{□} -\displaystyle \frac{□}{□} \times \displaystyle \frac{□}{□})$
$=16-(\displaystyle \frac{□}{□} -\displaystyle \frac{□}{□})$
$=16-\displaystyle \frac{□}{□} =\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□}=\displaystyle \frac{□}{□}$
この動画を見る
【2024年桜蔭中】
$16- ${$ 7 \displaystyle \frac{1}{3} \times 2.2-(5.7-4\displaystyle \frac{1}{6})\div 3\displaystyle \frac{2}{7} $}$=□$
$16-${$ \displaystyle \frac{□}{□} \times \displaystyle \frac{□}{□}-(\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□})\div \displaystyle \frac{□}{□}$ }
$=16-${$ \displaystyle \frac{□}{□} -(\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□})\times \displaystyle \frac{□}{□}$ }
$=16- (\displaystyle \frac{□}{□} -\displaystyle \frac{□}{□} \times \displaystyle \frac{□}{□})$
$=16-(\displaystyle \frac{□}{□} -\displaystyle \frac{□}{□})$
$=16-\displaystyle \frac{□}{□} =\displaystyle \frac{□}{□}-\displaystyle \frac{□}{□}=\displaystyle \frac{□}{□}$
この3問を15秒で解け!~おかじゅんに計算の秘訣を授業してみた~
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$15 \times 13$
②$11 \times 14$
③$14 \times 18$
この動画を見る
①$15 \times 13$
②$11 \times 14$
③$14 \times 18$
1+2+3+...+100を一瞬で出す「にじにじ算」をあやんぬに授業してみた【あやんぬ×あきとんとん】
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1+2+3+...+100を一瞬で出す「にじにじ算」説明動画です
この動画を見る
1+2+3+...+100を一瞬で出す「にじにじ算」説明動画です
19×19を一瞬で出す「かたかた算」をあめんぼぷらすおまつ監督に教えてみた【おまつ監督×あきとんとんコラボ】
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
19×19を一瞬で出す「かたかた算」解説動画です
この動画を見る
19×19を一瞬で出す「かたかた算」解説動画です
この計算方法知ってる?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#その他#その他
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
かたかた算 説明動画です
$11 \times 18=??$
$12 \times 15=??$
$12 \times 14=??$
この動画を見る
かたかた算 説明動画です
$11 \times 18=??$
$12 \times 15=??$
$12 \times 14=??$
この計算方法知ってた?
これ一瞬で解ける?
桐島聡は逃走中なら何円稼いだ?
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
・逃走歴49年=49×365.25×24×60×60
(フジテレビ 逃走中では40分に逃げ切れると120万)
・1秒で500円
桐島聡容疑者が逃走中をやっていたとしたら、
7731億6120万円稼げた事になる。
この動画を見る
・逃走歴49年=49×365.25×24×60×60
(フジテレビ 逃走中では40分に逃げ切れると120万)
・1秒で500円
桐島聡容疑者が逃走中をやっていたとしたら、
7731億6120万円稼げた事になる。
文系か理系か一瞬でわかる質問
これ知ってた?
この計算方法知ってる?
この計算方法知ってる?
福田のおもしろ数学031〜おつりなしでは買えない値段の種類〜6円玉と7円玉だけしかない国のお話
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数A#整数の性質#ユークリッド互除法と不定方程式・N進法
指導講師:
福田次郎
問題文全文(内容文):
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?
この動画を見る
6円玉と7円玉しか使えないとき、おつり無しでは買えない値段は何種類あるか?