算数(中学受験)
算数(中学受験)
【算数練習】130(”大人”は頭の体操)

単元:
#算数(中学受験)#平面図形#角度と面積#図形の移動#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
三角形ABCの面積は?
※辺AB=辺AC
※図は動画内参照
この動画を見る
三角形ABCの面積は?
※辺AB=辺AC
※図は動画内参照
99%の大人がたどり着けない小学生の天才的発想!【中学受験算数】

「鉄板授業」Round1:麻布中2024年算数「面積の差」中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#平面図形#角度と面積
指導講師:
重吉
問題文全文(内容文):
以下の問いに答えなさい。
(1)右図において、AB=5cmであり、BC=BD=6cmです。三角形ABEの面積から三角形CDEの面積を引くと何㎠になりますか。
※図は動画内参照
この動画を見る
以下の問いに答えなさい。
(1)右図において、AB=5cmであり、BC=BD=6cmです。三角形ABEの面積から三角形CDEの面積を引くと何㎠になりますか。
※図は動画内参照
「鉄板授業」Round1:麻布中2024年算数「面積の差」中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#麻布中学
指導講師:
重吉
問題文全文(内容文):
右の図において、AB=5 cmであり、BC = BD = 6 cmです。三角形ABEの面積から三角形CDEの面積を引くと何㎠になりますか。
※図は動画内参照
この動画を見る
右の図において、AB=5 cmであり、BC = BD = 6 cmです。三角形ABEの面積から三角形CDEの面積を引くと何㎠になりますか。
※図は動画内参照
【小6算数手元解説】受験算数 カードを配り忘れた【問題文は概要欄】

単元:
#算数(中学受験)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師:
理数個別チャンネル
問題文全文(内容文):
町の子ども会では、会場に集まる子どもたちへ、到着順に1から順に番号のついたカードを配りました。そして、最後に来た子どもに配るカードの末尾の数字(1の位の数字)を当たり番号と決め、景品を出すことにしました。
最後の子どものカード番号は、末尾の数字が7であったので、末尾の数字が7の カードを持つ子供全体に500円の景品をわたしました。
ところが、配り忘れのカードが1枚あることに気がつきました。配り忘れたカー ドの番号は末尾の数字が2でした。そこで、この配り忘れたカードの番号より小さい番号で末尾の数字が6のカードを持つ子ども全員に300円の追加景品をわたしまし た。
この結果、景品をもらった子どもたちは33人で景品総額は14100円となりました。
(1) 最後に会場に来た子どもに配ったカードの番号は何番ですか。
(2) 配り忘れのカードの番号は何番ですか。
この動画を見る
町の子ども会では、会場に集まる子どもたちへ、到着順に1から順に番号のついたカードを配りました。そして、最後に来た子どもに配るカードの末尾の数字(1の位の数字)を当たり番号と決め、景品を出すことにしました。
最後の子どものカード番号は、末尾の数字が7であったので、末尾の数字が7の カードを持つ子供全体に500円の景品をわたしました。
ところが、配り忘れのカードが1枚あることに気がつきました。配り忘れたカー ドの番号は末尾の数字が2でした。そこで、この配り忘れたカードの番号より小さい番号で末尾の数字が6のカードを持つ子ども全員に300円の追加景品をわたしまし た。
この結果、景品をもらった子どもたちは33人で景品総額は14100円となりました。
(1) 最後に会場に来た子どもに配ったカードの番号は何番ですか。
(2) 配り忘れのカードの番号は何番ですか。
【算数練習】123(”大人”は頭の体操)

単元:
#算数(中学受験)#平面図形#角度と面積#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
円の中に面積10㎠の正方形がぴったり入っている。
円の面積は?
※円周率は3.14とする
※図は動画内参照
この動画を見る
円の中に面積10㎠の正方形がぴったり入っている。
円の面積は?
※円周率は3.14とする
※図は動画内参照
【算数練習】126(”大人”は頭の体操)

単元:
#算数(中学受験)#平面図形#角度と面積#図形の移動#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
辺AB=辺AD,角A=角C=90°,CD=1㎝の四角形ABDがある。
三角形ABDの面積は?
※図は動画内参照
この動画を見る
辺AB=辺AD,角A=角C=90°,CD=1㎝の四角形ABDがある。
三角形ABDの面積は?
※図は動画内参照
2024年栄東中(A)算数大問②、③中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#約数・倍数を利用する問題#速さ#速さその他
指導講師:
重吉
問題文全文(内容文):
マラソン大会で栄くん、東さん、中さんの3人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は3人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんの道のりの差を表したものです。このとき、次の問いに答えなさい。ただし、3人は一定の速さで走るものとします。
※図は動画内参照
(1)栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい。
(2)マラソン大会のコースは全長何mありますか。
(3)東さんがゴールするのはスタートしてから何分何秒後になりますか。
1つの整数に対し、ある規則にしたがって約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては、18=2×3×3だから、図2のような頂点の個数が6個の長方形がつくれます。90に対しては、90=2×3×3×5だから、図3のような頂点の個数が12個の直方体がつくれます。このとき、次の問いに答えなさい。
(1)図1のアに入る数を答えなさい。
(2)2024に対してつくれる図形の頂点の個数は全部で何個になりますか。
(3)ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
※図は動画内参照
この動画を見る
マラソン大会で栄くん、東さん、中さんの3人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は3人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんの道のりの差を表したものです。このとき、次の問いに答えなさい。ただし、3人は一定の速さで走るものとします。
※図は動画内参照
(1)栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい。
(2)マラソン大会のコースは全長何mありますか。
(3)東さんがゴールするのはスタートしてから何分何秒後になりますか。
1つの整数に対し、ある規則にしたがって約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては、18=2×3×3だから、図2のような頂点の個数が6個の長方形がつくれます。90に対しては、90=2×3×3×5だから、図3のような頂点の個数が12個の直方体がつくれます。このとき、次の問いに答えなさい。
(1)図1のアに入る数を答えなさい。
(2)2024に対してつくれる図形の頂点の個数は全部で何個になりますか。
(3)ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
※図は動画内参照
2024年栄東中(A)算数大問②、③中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)#速さ#旅人算・通過算・流水算#麻布中学
指導講師:
重吉
問題文全文(内容文):
2
マラソン大会で栄くん、東さん、中さんの三人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は三人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんんお道のりの差を表したものです。このとき次の問いに答えなさい。ただし、三人は一定の速さで走るものとします。
※図は動画内参照
(1) 栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい
(2) マラソン大会のコースは全長何mありますか。
(3) 東さんがゴールするのはスタートしてから何分何秒後になりますか。
3
一つの整数に対し、ある規則に従って約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては18=2×3×3だから、図2にような頂点の個数が12個の直方体がつくれます。このとき次の問いに答えなさい。
(1) 図4のアに入る数を答えなさい。
(2) 2024に対して作れる図形の頂点の個数は全部で何個になりますか。
(3) ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
この動画を見る
2
マラソン大会で栄くん、東さん、中さんの三人が同時にスタートして走り出し、栄くん、東さん、中さんの順にゴールしました。図1は三人がスタートしてからの時間と栄くんと東さんの道のりの差、東さんと中さんんお道のりの差を表したものです。このとき次の問いに答えなさい。ただし、三人は一定の速さで走るものとします。
※図は動画内参照
(1) 栄くんと中さんの走る速さの比を最も簡単な整数の比で表しなさい
(2) マラソン大会のコースは全長何mありますか。
(3) 東さんがゴールするのはスタートしてから何分何秒後になりますか。
3
一つの整数に対し、ある規則に従って約数を配置した図形をつくります。約数を配置した点を頂点と呼ぶことにします。例えば、4に対しては4=2×2だから、図1のような頂点の個数が3個の直線がつくれます。18に対しては18=2×3×3だから、図2にような頂点の個数が12個の直方体がつくれます。このとき次の問いに答えなさい。
(1) 図4のアに入る数を答えなさい。
(2) 2024に対して作れる図形の頂点の個数は全部で何個になりますか。
(3) ある整数に対し頂点の個数が8個になる図形がつくれるとき、その整数として考えられる150以下の数は全部で何通りありますか。
2024年久留米附設中算数大問②、③中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#久留米大学附設中学
指導講師:
重吉
問題文全文(内容文):
2
今日は西暦2024年1月20日土曜日です。西暦2024年は閏年で、2月は29日あり、1年は366日あります。閏年ではない年を平年といい、一年は365日あります。地球が太陽の周りをまわる時間は365日よりも少しだけ長いので、閏年が次のように定められております。
西暦が4で割り切れる年を閏年とするが、この中で西暦が100で割り切れて、400で割り切れない年は平年とする。
これをもとに、次の問いに答えなさい。
(1) 西暦2100年は閏年と平年のどちらですか。理由をつけて答えなさい。
(2) 今年を含めて、今年から西暦2101年までに閏年は何回ありますか。
(3) 西暦2101年1月20日は居から何日後の何曜日ですか。
3
右の表のように、1列1行から規則的に、1,2,3,4と整数を書き込みます。例えば、2行3列に書かれている整数は8です。次の問いに答えなさい。
(1) 10行1列に書かれている整数は何ですか
(2) 11行2列に書かれている整数は何ですか
(3) 表の太枠のように、縦横二個ずつ、合計四個の整数を囲み、その和を考えます。表の太枠では、4個の整数の和は35です。
(ア) 11行1列の整数が太枠の左上となるように4個の整数を囲んだ時、4個の整数の和はいくつになりますか。
(イ) 太枠の中の四個の整数の和が999の時、解答用紙の太枠の中に、規則に従って四個の整数整数を書き込みなさい。
この動画を見る
2
今日は西暦2024年1月20日土曜日です。西暦2024年は閏年で、2月は29日あり、1年は366日あります。閏年ではない年を平年といい、一年は365日あります。地球が太陽の周りをまわる時間は365日よりも少しだけ長いので、閏年が次のように定められております。
西暦が4で割り切れる年を閏年とするが、この中で西暦が100で割り切れて、400で割り切れない年は平年とする。
これをもとに、次の問いに答えなさい。
(1) 西暦2100年は閏年と平年のどちらですか。理由をつけて答えなさい。
(2) 今年を含めて、今年から西暦2101年までに閏年は何回ありますか。
(3) 西暦2101年1月20日は居から何日後の何曜日ですか。
3
右の表のように、1列1行から規則的に、1,2,3,4と整数を書き込みます。例えば、2行3列に書かれている整数は8です。次の問いに答えなさい。
(1) 10行1列に書かれている整数は何ですか
(2) 11行2列に書かれている整数は何ですか
(3) 表の太枠のように、縦横二個ずつ、合計四個の整数を囲み、その和を考えます。表の太枠では、4個の整数の和は35です。
(ア) 11行1列の整数が太枠の左上となるように4個の整数を囲んだ時、4個の整数の和はいくつになりますか。
(イ) 太枠の中の四個の整数の和が999の時、解答用紙の太枠の中に、規則に従って四個の整数整数を書き込みなさい。
2024年久留米附設中算数大問②、③中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#久留米大学附設中学
指導講師:
重吉
問題文全文(内容文):
2.今日は西暦2024年1月20日土曜日です。西暦2024年は閏年(うるうどし)で、2月は29日あり、1年は366日あります。閏年でない年を平年といい、1年は365日あります。地球が太陽の周りをまわる時間は365日より少しだけ長いので、閏年が次のように定められております。
「西暦が4で割り切れる年を閏年とするが、この中で西暦が100で割り切れて、400で割り切れない年は平年とする。」
これをもとに、次の問いに答えなさい。
(1) 西暦2100年は閏年と平年のどちらですか。理由をつけて答えなさい。
(2) 今年を含めて、今年から西暦2101年までに閏年は何回ありますか。
(3) 西暦2101年1月20日は今日から何日後の何曜日ですか。
3. 右の表(表は動画内参照)のように、1行1列から規則的に1,2,3,4,と整数を書き込みます。例えば2行3列に書かれている整数は8です。次の問いに答えなさい。
(1) 10行1列に書かれている整数は何ですか。
(2) 11行2列に書かれている整数は何ですか。
(3) 表の太枠のように、縦横二個ずつ、合計4個の整数を囲み、その和を考えます。表の太枠では4個の整数の和は35です。
(ア) 11行1列の整数が太枠の左上となるように4個の整数を囲んだ時、4個の整数の和はいくつになりますか
(イ) 太枠の中の4個の整数の和が999の時に、解答用紙の太枠の中に、規則にしたがって4個の整数を書き込みなさい。
この動画を見る
2.今日は西暦2024年1月20日土曜日です。西暦2024年は閏年(うるうどし)で、2月は29日あり、1年は366日あります。閏年でない年を平年といい、1年は365日あります。地球が太陽の周りをまわる時間は365日より少しだけ長いので、閏年が次のように定められております。
「西暦が4で割り切れる年を閏年とするが、この中で西暦が100で割り切れて、400で割り切れない年は平年とする。」
これをもとに、次の問いに答えなさい。
(1) 西暦2100年は閏年と平年のどちらですか。理由をつけて答えなさい。
(2) 今年を含めて、今年から西暦2101年までに閏年は何回ありますか。
(3) 西暦2101年1月20日は今日から何日後の何曜日ですか。
3. 右の表(表は動画内参照)のように、1行1列から規則的に1,2,3,4,と整数を書き込みます。例えば2行3列に書かれている整数は8です。次の問いに答えなさい。
(1) 10行1列に書かれている整数は何ですか。
(2) 11行2列に書かれている整数は何ですか。
(3) 表の太枠のように、縦横二個ずつ、合計4個の整数を囲み、その和を考えます。表の太枠では4個の整数の和は35です。
(ア) 11行1列の整数が太枠の左上となるように4個の整数を囲んだ時、4個の整数の和はいくつになりますか
(イ) 太枠の中の4個の整数の和が999の時に、解答用紙の太枠の中に、規則にしたがって4個の整数を書き込みなさい。
【速報】新しい最大の素数が発見されました

2024年聖光学院中算数大問②中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#平面図形#平面図形その他#聖光学院中学
指導講師:
重吉
問題文全文(内容文):
【操作】
長方形abcdの縦の辺ABとCDの真ん中の点をそれぞれE,Fとします。下の図のように、E,Fを通る直線で長方形ABCDを切って二つに分けて、辺AEを辺FCに重ねて新たな長方形EBFDをつくります。
例えば、縦4 cm、横5 cmの長方形にこの操作を行うと、縦2cm,横10 cmの長方形になります。
縦ア cm、横イ cmの長方形Rにこの操作を何回か行うことを考えます。ア、イは整数であるもののとして、次の問いに答えなさい。
(1) 長方形Rにこの操作を7回続けて行ったところ、正方形ができました。ア、イを最も簡単な整数比で答えなさい。
(2) 長方形Rにこの操作を行うごとにできた長方形の周の長さを計算したところ8回目の操作後に初めて周の長さが奇数になりました。アとして考えられる整数のうち、三桁のものは何個ありますか。
(3) 長方形Rにこの操作を行うごとにできた長方形の周の長さを計算し、操作前と操作後の周の長さを比べて増加しているか減少しているかを調べたところ、四回目までの操作の前後ではすべて減少し、五回目の捜査では増加しました。ア÷イの商として考えられる整数は何個ありますか。
この動画を見る
【操作】
長方形abcdの縦の辺ABとCDの真ん中の点をそれぞれE,Fとします。下の図のように、E,Fを通る直線で長方形ABCDを切って二つに分けて、辺AEを辺FCに重ねて新たな長方形EBFDをつくります。
例えば、縦4 cm、横5 cmの長方形にこの操作を行うと、縦2cm,横10 cmの長方形になります。
縦ア cm、横イ cmの長方形Rにこの操作を何回か行うことを考えます。ア、イは整数であるもののとして、次の問いに答えなさい。
(1) 長方形Rにこの操作を7回続けて行ったところ、正方形ができました。ア、イを最も簡単な整数比で答えなさい。
(2) 長方形Rにこの操作を行うごとにできた長方形の周の長さを計算したところ8回目の操作後に初めて周の長さが奇数になりました。アとして考えられる整数のうち、三桁のものは何個ありますか。
(3) 長方形Rにこの操作を行うごとにできた長方形の周の長さを計算し、操作前と操作後の周の長さを比べて増加しているか減少しているかを調べたところ、四回目までの操作の前後ではすべて減少し、五回目の捜査では増加しました。ア÷イの商として考えられる整数は何個ありますか。
算数練習125

単元:
#算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#図形の移動#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
一辺3㎝の直角三角形がある。
赤い部分の面積は?
※図は動画内参照
この動画を見る
一辺3㎝の直角三角形がある。
赤い部分の面積は?
※図は動画内参照
【受験算数】速さに関する問題(D2):平均の速さ2

単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#SPX#5年算数D-支援#中学受験教材#5年算数W-支援
指導講師:
受験算数の森
問題文全文(内容文):
A地とB地の間を、行きは時速30km、帰りは時速□kmで往復すると、往復の平均の速さは時速36kmになります。
この動画を見る
A地とB地の間を、行きは時速30km、帰りは時速□kmで往復すると、往復の平均の速さは時速36kmになります。
【受験算数】速さに関する問題(D1):2回の競走

単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#SPX#5年算数D-支援#5年算数W-支援
指導講師:
受験算数の森
問題文全文(内容文):
A、B2人が1000mある池の周囲を一周する競走を2回おこないました。1回目は、AはBより75mだけ出発点を先に進め、Bの出発点を決勝点として同時にスタートしましたが、Bが決勝点に着いたときにはAはまだ25m残していました。2回目は、同じ出発点からAはBより1分早くスタートしたので、Bが決勝点に着いたのは、Aが着いてから40秒後でした。この2回の競走では、2人はそれぞれ一定の速さで走ったとします。次の問いに答えなさい。
(1)AとBの速さの比を求めなさい。
(2)AとBは100m進むのにそれぞれ何秒かかりますか。
この動画を見る
A、B2人が1000mある池の周囲を一周する競走を2回おこないました。1回目は、AはBより75mだけ出発点を先に進め、Bの出発点を決勝点として同時にスタートしましたが、Bが決勝点に着いたときにはAはまだ25m残していました。2回目は、同じ出発点からAはBより1分早くスタートしたので、Bが決勝点に着いたのは、Aが着いてから40秒後でした。この2回の競走では、2人はそれぞれ一定の速さで走ったとします。次の問いに答えなさい。
(1)AとBの速さの比を求めなさい。
(2)AとBは100m進むのにそれぞれ何秒かかりますか。
2024年市川中算数大問②、③中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#平面図形#角度と面積#市川中学
指導講師:
重吉
問題文全文(内容文):
2
【操作】
○の中に書き入れた整数を3で割ったとき
・余りが0であれば右に1つ進み、進んだ先の〇に商を書き入れる。
・余りが1であれば、右斜め上に進み、進んだ先の〇に商を書き入れる
・余りが2であれば、上に1進み、進んだ先の〇に商を書き入れる
最初、Aに整数を書き入れて操作を繰り返し、D,E,F,G,Hのいずれかに整数を書き入れると終了します。例えば、Aに15を書き入れたとき、15は3で割ると余りが0なのでBに進み、Bに商の5を書き入れます。次に5は3で割ると余りが2なので、Fに進み、Fの商に1を書き入れて終了します。このとき、次の問いに答えなさい。
(1) Aに111を書き入れたとき、最後にD,E,F,G,Hのどこの場所にどんな整数が書き入れられて終了するか答えなさい。
(2) Aに書き入れたとき、最後にDに進んで終了する整数は1から2024までに何個あるか求めなさい。
(3) Aに書き入れたとき、最後にGに進んで終了する整数は、1から2024までに何個あるか求めなさい。
3
円に対して、次の図のような規則で円を書き加えていく操作を繰り返していきます。操作を一回行った後の図を1番目の図、操作を二回行った後の図を2番目の図としていくとき、次の問いに答えなさい。
(1)次の図に、コンパスと定規を用いて円を書き加えて一番目の図を完成させなさい。ただし、作図に用いた線は消さないこと。
白く塗られている半径2 cmの円に対して、奇数回目の操作で書き加える円は灰色でぬり、偶数回目の操作操作で書き加える円は白色で塗ることを繰り返します。
(2) 3番目の図の灰色の部分の面積を引くと求めなさい。
(3) 5番目の図の白色の部分と灰色の部分の面積の比を求めなさい。
この動画を見る
2
【操作】
○の中に書き入れた整数を3で割ったとき
・余りが0であれば右に1つ進み、進んだ先の〇に商を書き入れる。
・余りが1であれば、右斜め上に進み、進んだ先の〇に商を書き入れる
・余りが2であれば、上に1進み、進んだ先の〇に商を書き入れる
最初、Aに整数を書き入れて操作を繰り返し、D,E,F,G,Hのいずれかに整数を書き入れると終了します。例えば、Aに15を書き入れたとき、15は3で割ると余りが0なのでBに進み、Bに商の5を書き入れます。次に5は3で割ると余りが2なので、Fに進み、Fの商に1を書き入れて終了します。このとき、次の問いに答えなさい。
(1) Aに111を書き入れたとき、最後にD,E,F,G,Hのどこの場所にどんな整数が書き入れられて終了するか答えなさい。
(2) Aに書き入れたとき、最後にDに進んで終了する整数は1から2024までに何個あるか求めなさい。
(3) Aに書き入れたとき、最後にGに進んで終了する整数は、1から2024までに何個あるか求めなさい。
3
円に対して、次の図のような規則で円を書き加えていく操作を繰り返していきます。操作を一回行った後の図を1番目の図、操作を二回行った後の図を2番目の図としていくとき、次の問いに答えなさい。
(1)次の図に、コンパスと定規を用いて円を書き加えて一番目の図を完成させなさい。ただし、作図に用いた線は消さないこと。
白く塗られている半径2 cmの円に対して、奇数回目の操作で書き加える円は灰色でぬり、偶数回目の操作操作で書き加える円は白色で塗ることを繰り返します。
(2) 3番目の図の灰色の部分の面積を引くと求めなさい。
(3) 5番目の図の白色の部分と灰色の部分の面積の比を求めなさい。
【小6算数手元解説】受験算数 ゼッケン【問題文は概要欄】

単元:
#算数(中学受験)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師:
理数個別チャンネル
問題文全文(内容文):
50人の子どもの胸に、1.2.……… 50と番号の書かれたゼッケンを付けさせました。 次に、この50人を適当に3班に分け、各班ごとに1000m競走を行ったところ、各班 とも同着はなく、また、全員が完走しました。それぞれの班で、子どもの到着順に1,2,3,4‥…
と番号の書かれたゼッケンを背中に付けさせました。全員が胸と背中に ゼッケンを付けていることになります。(ゼッケンとは、選手が付ける番号を書いた布のことです。)
このとき、同じ番号のゼッケンを何枚使ったかを調べたところ、下の表のように なりました。下の表の空らん(ア)、(イ)にあてはまる数と、各班の人数を多い順に 書きなさい。
この動画を見る
50人の子どもの胸に、1.2.……… 50と番号の書かれたゼッケンを付けさせました。 次に、この50人を適当に3班に分け、各班ごとに1000m競走を行ったところ、各班 とも同着はなく、また、全員が完走しました。それぞれの班で、子どもの到着順に1,2,3,4‥…
と番号の書かれたゼッケンを背中に付けさせました。全員が胸と背中に ゼッケンを付けていることになります。(ゼッケンとは、選手が付ける番号を書いた布のことです。)
このとき、同じ番号のゼッケンを何枚使ったかを調べたところ、下の表のように なりました。下の表の空らん(ア)、(イ)にあてはまる数と、各班の人数を多い順に 書きなさい。
【中学受験問題に挑戦】131(”大人”は頭の体操) 三角形と四角形の考察

単元:
#算数(中学受験)#平面図形#角度と面積#図形の移動#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
青い図形の面積は?
※長方形の中に2つの直線が引いてある
※図は動画内参照
この動画を見る
青い図形の面積は?
※長方形の中に2つの直線が引いてある
※図は動画内参照
小学生でも解けるオリジナル問題!面白くできました!【中学受験算数】

99%大人が解けない!?小学生の悪魔的発想が学べる珠玉の一題!【中学受験算数】

2024年早稲田実業中算数大問②中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#過去問解説(学校別)#文章題#仕事算とニュートン算#早稲田実業中等部
指導講師:
重吉
問題文全文(内容文):
(1)
あるクラスの男子25人、女子15人が上体起こしを行い、その結果について以下のことが分かっています。
【男子】
最も回数が多かったのは26回、最も回数が少なかったのは6回最頻値は22回でその人数は10人
【女子】
最も回数が多かったのは28回、最も回数が少なかったのは9回。中央値は20回。
次の➀、②に答えなさい。求め方も書きなさい。
➀男子の回数の平均が最も多くなるとき、男子の平均は何回ですか。
②女子の回数の平均が最も多くなる時、女子の平均は何回ですか。
(2)
あるテーマパークでは開場前に行列ができていて、開場後も一定の割合で人が行列に並び続けます。開場後に窓口を9箇所開くと45分で行列が無くなり、15ヶ所開くと18分で行列がなくなります。次の➀②い答えなさい。
➀行列をなくすには、開場後に窓口を最低何箇所開く必要がありますか。
②開場後に窓口を7ヶ所開き、その十分後に窓口を何ヶ所か増やしました。すると、窓口を増やしてから6分40秒で行列がなくなりました。窓口を何ヶ所増やしましたか。
この動画を見る
(1)
あるクラスの男子25人、女子15人が上体起こしを行い、その結果について以下のことが分かっています。
【男子】
最も回数が多かったのは26回、最も回数が少なかったのは6回最頻値は22回でその人数は10人
【女子】
最も回数が多かったのは28回、最も回数が少なかったのは9回。中央値は20回。
次の➀、②に答えなさい。求め方も書きなさい。
➀男子の回数の平均が最も多くなるとき、男子の平均は何回ですか。
②女子の回数の平均が最も多くなる時、女子の平均は何回ですか。
(2)
あるテーマパークでは開場前に行列ができていて、開場後も一定の割合で人が行列に並び続けます。開場後に窓口を9箇所開くと45分で行列が無くなり、15ヶ所開くと18分で行列がなくなります。次の➀②い答えなさい。
➀行列をなくすには、開場後に窓口を最低何箇所開く必要がありますか。
②開場後に窓口を7ヶ所開き、その十分後に窓口を何ヶ所か増やしました。すると、窓口を増やしてから6分40秒で行列がなくなりました。窓口を何ヶ所増やしましたか。
【小6算数手元解説】受験算数 ペア券の扱い【問題文は概要欄】

単元:
#算数(中学受験)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
指導講師:
理数個別チャンネル
問題文全文(内容文):
あるスケート場の入場料は、大人1人の大人券が640円、子供1人の子供券が380 円です。また、大人1人と子供1人で1組の親子券もあり、800円です。たとえば、 大人2人,子供5人ならば、親子券2枚、子供券3枚で入場でき、入場料は合計 2740円となります。ある日の入場者数が大人と子供を合わせて100人で、入場料の合 計は51800円でした。このとき、次の問いに答えなさい。
(1) その日の子供の入場者数として考えられる数をすべて答えなさい。
(2) その日の子供券の発行枚数は34枚でした。その日の親子券の発行枚数は何枚ですか。
この動画を見る
あるスケート場の入場料は、大人1人の大人券が640円、子供1人の子供券が380 円です。また、大人1人と子供1人で1組の親子券もあり、800円です。たとえば、 大人2人,子供5人ならば、親子券2枚、子供券3枚で入場でき、入場料は合計 2740円となります。ある日の入場者数が大人と子供を合わせて100人で、入場料の合 計は51800円でした。このとき、次の問いに答えなさい。
(1) その日の子供の入場者数として考えられる数をすべて答えなさい。
(2) その日の子供券の発行枚数は34枚でした。その日の親子券の発行枚数は何枚ですか。
【算数練習】124(”大人”は頭の体操)

単元:
#算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#平面図形その他
指導講師:
算数・数学ちゃんねる
問題文全文(内容文):
正方形ABCDの面積は?
※三角形ABO=28㎝
※三角形CDO=70㎝
※図は動画内参照
この動画を見る
正方形ABCDの面積は?
※三角形ABO=28㎝
※三角形CDO=70㎝
※図は動画内参照
2024年東洋英和女学院中算数大問⑤~⑨中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#文章題#平面図形#速さ
指導講師:
重吉
問題文全文(内容文):
※図は動画内参照
5
下図のように、直角二等辺三角形の中に円と三つの正方形があります。影の部分の面積を求めなさい。ただし、円周率は3.14とします。
6
A駅の動く歩道は、一定の速さで動いています。この歩道を分速50mで歩くと2分間かかり、分速75mで歩くと1分30秒かかります。
歩かずに乗ったまま場合は、何分間かかりますか。
7
児童38人が農業体験をしました。玉ねぎ23個、にんじん25本、なす28本の合計76個を収穫したので、一人二個ずつ異なる種類の野菜を持ち帰りました。なすと玉ねぎを持ち帰った児童は何人ですか。考え方と式も書きなさい。
8
A,B,C,D,E,Fの六人が円形のテーブルを囲んで座りました。席は等間隔で並んでいて、1~6の番号が書かれています。6人は次のように言っています。
A「Eさんの席の番号は、私の番号の約数です」
B「私の正面にEさんが座っています」
C「私とfさんは自分の好きな番号の席に座りました」
D「私の席の番号は、CさんとEさんの番号の和よりも大きいです」
E「Bさんの席の番号は、Aさんの番号の2倍です」
F「CさんとDさんの間に座っている人は一人です」
CさんとFさんの好きな番号は、何番ですか
9
はAの小数第一位を四捨五入した数を表します。
たとえば、==2です。次の問いに答えなさい。
(1) <÷3>はいくつですか
(2) =6に当てはまる整数Bの中で、最小の数と最大の数を答えなさい。
(3) =6と=2を同時に満たす整数Bを全て答えなさい。
この動画を見る
※図は動画内参照
5
下図のように、直角二等辺三角形の中に円と三つの正方形があります。影の部分の面積を求めなさい。ただし、円周率は3.14とします。
6
A駅の動く歩道は、一定の速さで動いています。この歩道を分速50mで歩くと2分間かかり、分速75mで歩くと1分30秒かかります。
歩かずに乗ったまま場合は、何分間かかりますか。
7
児童38人が農業体験をしました。玉ねぎ23個、にんじん25本、なす28本の合計76個を収穫したので、一人二個ずつ異なる種類の野菜を持ち帰りました。なすと玉ねぎを持ち帰った児童は何人ですか。考え方と式も書きなさい。
8
A,B,C,D,E,Fの六人が円形のテーブルを囲んで座りました。席は等間隔で並んでいて、1~6の番号が書かれています。6人は次のように言っています。
A「Eさんの席の番号は、私の番号の約数です」
B「私の正面にEさんが座っています」
C「私とfさんは自分の好きな番号の席に座りました」
D「私の席の番号は、CさんとEさんの番号の和よりも大きいです」
E「Bさんの席の番号は、Aさんの番号の2倍です」
F「CさんとDさんの間に座っている人は一人です」
CさんとFさんの好きな番号は、何番ですか
9
はAの小数第一位を四捨五入した数を表します。
たとえば、==2です。次の問いに答えなさい。
(1) <÷3>はいくつですか
(2) =6に当てはまる整数Bの中で、最小の数と最大の数を答えなさい。
(3) =6と=2を同時に満たす整数Bを全て答えなさい。
投票算算(標準・発展)をサクッと学習しよう!【中学受験算数】【特殊算攻略講座24】【最終回】

単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
こばちゃん塾
問題文全文(内容文):
例題1
34人のクラスで、選挙によって学級委員を1人選びます。
クラスの中から3人が立候補したとき、
当選する可能性があるのは、最も少なくて何票集めたときですか?
(1人1票開票し、無効票は無いものとします。)
例題2
47人のクラスで3人の学級代表を選ぶのに5人の生徒が立候補しました。
最低何票とすれは必ず当選しますか?
(1人1票投票し、無効票はないものとします。)
例題3
ある学校の6年生235人の中から生徒会長を1人選ぶことになり、
ア~オの5人が立候補しました。
下の表は開票のろちゅう経過を表したものです。
このとき、アとオはまだ開票されていない票のうち何票以上とすれば、
必ず当選しますか?それぞれ答えましょう。
(1人1票投票し、無効票はないものとします。)
*図は動画内参照
この動画を見る
例題1
34人のクラスで、選挙によって学級委員を1人選びます。
クラスの中から3人が立候補したとき、
当選する可能性があるのは、最も少なくて何票集めたときですか?
(1人1票開票し、無効票は無いものとします。)
例題2
47人のクラスで3人の学級代表を選ぶのに5人の生徒が立候補しました。
最低何票とすれは必ず当選しますか?
(1人1票投票し、無効票はないものとします。)
例題3
ある学校の6年生235人の中から生徒会長を1人選ぶことになり、
ア~オの5人が立候補しました。
下の表は開票のろちゅう経過を表したものです。
このとき、アとオはまだ開票されていない票のうち何票以上とすれば、
必ず当選しますか?それぞれ答えましょう。
(1人1票投票し、無効票はないものとします。)
*図は動画内参照
2024年ラ・サール中算数大問①、②中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#売買損益と食塩水#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算#平面図形#角度と面積#ラ・サール中学
指導講師:
重吉
この動画を見る
意外と解けない面白い一題!小学生の知識だけで解けますか?【中学受験算数】

単元:
#算数(中学受験)#平面図形#角度と面積#平面図形その他
指導講師:
こばちゃん塾
問題文全文(内容文):
四角形ABCDは正方形です。
三角形DEFの面積は?
*図は動画内参照
この動画を見る
四角形ABCDは正方形です。
三角形DEFの面積は?
*図は動画内参照
なぜかとけない?

2024年桜蔭中算数大問①(1)~(3)中学受験指導歴20年以上のプロ解説

単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#平面図形#角度と面積#場合の数#場合の数#桜蔭中学
指導講師:
重吉
問題文全文(内容文):
Ⅰ
(1)①16-{7(1/3)×2.2-(5.7-4(1/6)÷3(2/7))}=㋐
②5.75-3/2÷(15/26-㋑×1.35)=2(1/28)
(2) 黒い丸●と白い丸○を右の(例)のように、縦7マスすべてに並べます。
① 並べ方のきまりは次の(あ) (い) (う) (え)です。
(あ) 上から2マス目と上から4マス目には同じ色の丸は並べない。
(い) 上から2マス目と上から6マス目には同じ色の丸を並べる。
(う) 下から3マスすべてに同じ色の丸を並べることはできない。
(え) 上から4マス目が白い丸のとき、上から3マス目と上から5マス目の両方ともに黒い丸を並べることはできない。
(3マス目,5マス目のどちらか一方に黒い丸を並べることはできる)
このとき、黒い丸と白い丸の並べ方は全部で㋒通りあります。
② 縦7マスを右のように4列並べます。①の(あ) (い) (う) (え)のきまりに次の(お)のきまりを加えて、黒い丸と白い丸をこの28マスに並べるとき、 並べ方は全部で㋓通りあります。
(お) 各列の上から2マス目のA, B, C, DにはAとDに同じ色の丸, BとCに同じ色の丸を並べる。また、AとBには同じ色の丸を並べない。
(3) 図1のような1辺の長さが10cmの正方形の折り紙を、1本の対角線で折ると図2のようになります。図2の直角二等辺三角形を,45°の角をもつ頂点が重なるように折ると図3のようになります。 図3の直角二等辺三角形を、直角が3等分になるように折ると、順に図4、図5のようになります。 図5の折り紙を直線ABにそって切ると図6のようになります。ただし、図の (細い直線) は折り目を表します。
※図は動画内参照
① 図6の折り紙を広げたときの図形の名前は㋔です。
② 図6のABの長さをはかると2.7cmでした。図6の折り紙を広げたときの図形の面積は㋕cm²です。
③ 右の図7のように、図6の三角形ABCの内部から1辺の長さが 0.6cmの正方形を切りぬきます。さらに、中心が辺BC上にある直径1cmの半円を切り取ります。図7の折り紙を広げたとき、 残った部分の面積は㋖cm²です。
この動画を見る
Ⅰ
(1)①16-{7(1/3)×2.2-(5.7-4(1/6)÷3(2/7))}=㋐
②5.75-3/2÷(15/26-㋑×1.35)=2(1/28)
(2) 黒い丸●と白い丸○を右の(例)のように、縦7マスすべてに並べます。
① 並べ方のきまりは次の(あ) (い) (う) (え)です。
(あ) 上から2マス目と上から4マス目には同じ色の丸は並べない。
(い) 上から2マス目と上から6マス目には同じ色の丸を並べる。
(う) 下から3マスすべてに同じ色の丸を並べることはできない。
(え) 上から4マス目が白い丸のとき、上から3マス目と上から5マス目の両方ともに黒い丸を並べることはできない。
(3マス目,5マス目のどちらか一方に黒い丸を並べることはできる)
このとき、黒い丸と白い丸の並べ方は全部で㋒通りあります。
② 縦7マスを右のように4列並べます。①の(あ) (い) (う) (え)のきまりに次の(お)のきまりを加えて、黒い丸と白い丸をこの28マスに並べるとき、 並べ方は全部で㋓通りあります。
(お) 各列の上から2マス目のA, B, C, DにはAとDに同じ色の丸, BとCに同じ色の丸を並べる。また、AとBには同じ色の丸を並べない。
(3) 図1のような1辺の長さが10cmの正方形の折り紙を、1本の対角線で折ると図2のようになります。図2の直角二等辺三角形を,45°の角をもつ頂点が重なるように折ると図3のようになります。 図3の直角二等辺三角形を、直角が3等分になるように折ると、順に図4、図5のようになります。 図5の折り紙を直線ABにそって切ると図6のようになります。ただし、図の (細い直線) は折り目を表します。
※図は動画内参照
① 図6の折り紙を広げたときの図形の名前は㋔です。
② 図6のABの長さをはかると2.7cmでした。図6の折り紙を広げたときの図形の面積は㋕cm²です。
③ 右の図7のように、図6の三角形ABCの内部から1辺の長さが 0.6cmの正方形を切りぬきます。さらに、中心が辺BC上にある直径1cmの半円を切り取ります。図7の折り紙を広げたとき、 残った部分の面積は㋖cm²です。
