佐賀大学 - 質問解決D.B.(データベース)

佐賀大学

【高校数学】毎日積分63日目~47都道府県制覇への道~【⑦佐賀】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の問に答えよ。
(1)等式$(\tan\theta)’=\dfrac{1}{\cos^2\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{1}{\cos^2\theta}d\theta$の値を求めよ。
(2)等式$\dfrac{\cos\theta}{1+\sin\theta}+\dfrac{\cosθ}{1-\sin\theta}=\dfrac{2}{\cos\theta}$を示せ。また、定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos\theta}d\theta$の値を求めよ。
(3)定積分$\displaystyle \int_{0}^{\frac{\pi}{6}}\dfrac{1}{\cos^3\theta}d\theta$の値を求めよ。
【佐賀大学 2023】
この動画を見る 

三項間漸化式の基本問題 佐賀大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016年 佐賀大学過去問

$0<P<1$
$a_1=1$
$a_2=2$
$a_{n+2}=(1-P)a_{n+1}+Pa_n$
$a_n$の一般項を求めよ。
この動画を見る 

佐賀大(医)無理数の証明

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 佐賀大学医学部 過去問

①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。

②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
この動画を見る 

佐賀大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022年 佐賀大学 過去問

1枚のコインをくり返し投げ、表の出る回数が
ちょうど$n$回目で5回となる確率を$P_n$

①$P_n$を$n$の式で

②$P_n$の最大値
この動画を見る 

佐賀大 確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 佐賀大学 過去問

0,1,2,3のカードから1枚選んでメモをしてもどすのを$n$回くり返し、
選んだカードの和を$S_n$とする。
$S_n$が3で割り切れる確率$p_n$、3で割って1余る確率$q_n$を求めよ。
この動画を見る 

佐賀大(医)3次方程式の解の公式その2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.

佐賀大(医)過去問
この動画を見る 

佐賀大 三次関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$上を点$P$が原点から点$A(a,a^3-a)$まで動く
$(a \gt 0)\triangle OAP$の最大値を求めよ

出典:2005年佐賀大学 過去問
この動画を見る 

佐賀大 バーゼル問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
以下を証明せよ
$\displaystyle \frac{1}{1^2}+\displaystyle \frac{1}{3^2}+\displaystyle \frac{1}{5^2}+…+\displaystyle \frac{1}{(2n-1)^2} \lt \displaystyle \frac{3}{2}$

出典:1995年佐賀大学 過去問
この動画を見る 

佐賀大 三次関数 最大値・最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
09年 佐賀大学

$0\lt p\lt1$の範囲のとき、$f(x)=x^3-(3p+2)x^2+8px$の $0\leqq x\leqq1$における最大値、最小値を求めよ
この動画を見る 

佐賀大 三次関数上の三角形の面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
$y=x^3-x$のグラフ上を点Pが原点から、$A(a,a^3-a)(a>0)$まで動く。
△OAPの最大値
この動画を見る 

佐賀大 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
この動画を見る 
PAGE TOP