大学入試過去問(数学)
実数解の個数 山梨大 三次方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2x^3-3kx^2+1=0$
(1)
実数解が1つである$k$の範囲は?
(2)
実数解が1つでその絶対値が1未満である$k$の範囲は?
出典:2002年山梨大学 過去問
この動画を見る
$2x^3-3kx^2+1=0$
(1)
実数解が1つである$k$の範囲は?
(2)
実数解が1つでその絶対値が1未満である$k$の範囲は?
出典:2002年山梨大学 過去問
信州大 二次方程式・二次関数 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
この動画を見る
$x^2+ax+a=0$
2つの実数解をもち、その絶対値は1より小さい$a$の範囲
出典:2002年信州大学 過去問
東京水産大 三次関数 三角形面積最大 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3+8x+3$
$f(x)$上の2つの定点$A(0,3),B(3,0)$と動点$P(a,f(a))(0 \lt a \lt 3)\triangle PAB$の面積の最大値は?
出典:2002年東京海洋大学 過去問
この動画を見る
$f(x)=-x^3+8x+3$
$f(x)$上の2つの定点$A(0,3),B(3,0)$と動点$P(a,f(a))(0 \lt a \lt 3)\triangle PAB$の面積の最大値は?
出典:2002年東京海洋大学 過去問
京都大 3次方程式 実数解1つである証明 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ
出典:1989年京都大学 過去問
この動画を見る
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ
出典:1989年京都大学 過去問
信州大(医)三角関数 最大値・最小値 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sin^4x+2\sin x \cos x+\cos ^4x$の最小値と最大値を求めよ
出典:1986年信州大学医学部 過去問
この動画を見る
$\sin^4x+2\sin x \cos x+\cos ^4x$の最小値と最大値を求めよ
出典:1986年信州大学医学部 過去問
長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
この動画を見る
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲
出典:1988年長崎大学医学部 過去問
弘前大 3倍角 5倍角 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#三角関数#加法定理とその応用#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$\sin 3x$を$\sin x$で表せ
(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ
出典:1986年弘前大学 過去問
この動画を見る
(1)
$\sin 3x$を$\sin x$で表せ
(2)
$\sin x + \cos x=4\sin x \cos ^2x$を満たす$x$を求めよ
出典:1986年弘前大学 過去問
一橋大 三次関数と接点 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)
(1)
直線$PQ$の式($a,b$を用いて)
(2)
$P,Q$の座標($a,b$を用いて)
(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲
出典:一橋大学 過去問
この動画を見る
$y=x^3-ax$と、$(0,2b^3)$を通る直線はちょうど2点$P,Q$を共有している。
($P$は$Q$より左)
(1)
直線$PQ$の式($a,b$を用いて)
(2)
$P,Q$の座標($a,b$を用いて)
(3)
$\angle POQ=90^{ \circ }$となる$b$が存在するような$a$の範囲
出典:一橋大学 過去問
京都大 放物線と線分の長さ Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
この動画を見る
$(4,5)$を通る直線が、$y=\displaystyle \frac{1}{4}x^2$と2点$P,Q$で交わっている
線分$PQ$の最小値とその時の傾き
出典:1981年京都大学 過去問
島根大 4次関数 接線 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数
出典:島根大学 過去問
この動画を見る
$y=m(x-1)$と$y=(x-1)(x+a)(x-a)^2$が接するときの$m$の値。
ただし、$a$は$0 \lt a \lt 1$の定数
出典:島根大学 過去問
名古屋大 根号の計算 4次方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ
(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ
(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解
出典:1975年名古屋大学 過去問
この動画を見る
(1)
$(\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } })^2$を計算せよ
(2)
$a=\sqrt{ 13 }+\sqrt{ 9+2\sqrt{ 17 } }+\sqrt{ 9-2\sqrt{ 17 } }$を解にもつ整数係数の4次方程式を求めよ
(3)
8つの実数$\pm \sqrt{ 13 }\pm \sqrt{ 9+2\sqrt{ 17 } } \pm \sqrt{ 9-2\sqrt{ 17 } }$(複号任意)のうち(2)で求めた方程式の解
出典:1975年名古屋大学 過去問
東大 ヨビノリのタクミ先生 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
この動画を見る
$n$自然数、$a$を実数とする。
全ての整数$m$に対して、$m^2-(a-1)m+\displaystyle \frac{n^2}{2n+1}a \gt 0$が成り立つような$a$の範囲を$n$を用いて表せ
出典:1997年東京大学 過去問
早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
この動画を見る
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)
(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ
(2)
$a_{n},b_{n}$を求めよ
出典:1997年早稲田大学 理工学術院 過去問
高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
この動画を見る
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす
(ア)
ある実数$a$に対して$f(a) \lt 0$
(イ)
任意の整数$n$に対して$f(n) \geqq 0$
$f(x)$を求めよ
出典:高知大学 過去問
東大 数学 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$
(1)
$a+b$の値は?
(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ
出典:1997年東京大学 過去問
この動画を見る
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$
(1)
$a+b$の値は?
(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ
出典:1997年東京大学 過去問
山形大 三項間漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=-1$
一般項を求めよ
$2\displaystyle \sum_{k=1}^n a_{k}=3a_{n+1}-2a_{n}-1$
出典:2006年山形大学 過去問
この動画を見る
$a_{1}=-1$
一般項を求めよ
$2\displaystyle \sum_{k=1}^n a_{k}=3a_{n+1}-2a_{n}-1$
出典:2006年山形大学 過去問
東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$
(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ
(2)
$\beta^3$以下の最大の整数を求めよ
(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ
出典:2003年東京大学 過去問
この動画を見る
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$
(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ
(2)
$\beta^3$以下の最大の整数を求めよ
(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ
出典:2003年東京大学 過去問
名古屋大 指数 整数 方程式 Mathematics Japanese university entrance exam
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ
出典:2002年名古屋大学 過去問
この動画を見る
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ
出典:2002年名古屋大学 過去問
新潟大(医)3次関数・接線・面積 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#新潟大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線
(1)
$l$の方程式
(2)
$C$と$l$とで囲まれた面積
出典:2006年新潟大学医学部 過去問
この動画を見る
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線
(1)
$l$の方程式
(2)
$C$と$l$とで囲まれた面積
出典:2006年新潟大学医学部 過去問
徳島大 連立漸化式 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$
(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ
(2)
$a_{n},b_{n}$の一般項
(3)
$\displaystyle \sum_{k=1}^n ak$
出典:2012年徳島大学 過去問
この動画を見る
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$
(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ
(2)
$a_{n},b_{n}$の一般項
(3)
$\displaystyle \sum_{k=1}^n ak$
出典:2012年徳島大学 過去問
大阪府立大 積分 面積公式 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪府立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+x^2-4kx+6k^2$
$g(x)=x^3+2x-3k$
$f(x)$と$g(x)$とで囲まれた部分の面積が最大となる$k$の値は?
出典:2012年大阪府立大学 過去問
この動画を見る
$f(x)=x^3+x^2-4kx+6k^2$
$g(x)=x^3+2x-3k$
$f(x)$と$g(x)$とで囲まれた部分の面積が最大となる$k$の値は?
出典:2012年大阪府立大学 過去問
大阪大 確率 3次式 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
この動画を見る
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について
(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?
(2)
$f(x)$が極大値・極小値もとる確率は?
出典:2012年大阪大学 過去問
名古屋市立 式の値 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?
出典:2012年名古屋市立大学 過去問
この動画を見る
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?
出典:2012年名古屋市立大学 過去問
東大 整数問題 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
この動画を見る
$x,y,z$は自然数
(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ
(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ
出典:2006年東京大学 過去問
岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$
(1)
$a,b$と他の2解を求めよ。
(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?
出典:2006年岩手大学 過去問
この動画を見る
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$
(1)
$a,b$と他の2解を求めよ。
(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?
出典:2006年岩手大学 過去問
東工大 整数問題 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ
(2)
$a$の素因数は3と5以外にないことを示せ
(3)
$a$を求めよ
出典:2006年東京工業大学 過去問
この動画を見る
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ
(2)
$a$の素因数は3と5以外にないことを示せ
(3)
$a$を求めよ
出典:2006年東京工業大学 過去問
慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$
(1)
$\beta$は実数であることを示せ
(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。
(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。
出典:2004年東京慈恵会医科大学 過去問
この動画を見る
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$
(1)
$\beta$は実数であることを示せ
(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。
(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。
出典:2004年東京慈恵会医科大学 過去問
福島大 複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
この動画を見る
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$
(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$
出典:2005年福島大学 過去問
茨城大 複素数 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$
(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?
出典:2005年茨城大学 過去問
この動画を見る
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$
(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?
出典:2005年茨城大学 過去問
自治医科大 円の方程式 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ
出典:2008年自治医科大学 過去問
この動画を見る
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ
出典:2008年自治医科大学 過去問