大学入試過去問(数学) - 質問解決D.B.(データベース) - Page 5

大学入試過去問(数学)

福田の数学〜東北大学2025文系第4問〜2曲線で囲まれた2つの図形の面積が等しくなる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を正の実数とする。

曲線$y=x(x-2)^2$と

放物線$y=kx^2$で囲まれた$2$つの

部分の面積が等しくなるような

$k$の値を求めよ。

$2025$年東北大学文系過去問題
この動画を見る 

藤川天が東大理三に受かった塾講師役【これが新バイトだったのか】

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#学校別大学入試過去問解説(数学)#大学入試過去問(物理)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#東京大学#数学(高校生)#理科(高校生)#東京大学#東京大学
指導講師: Morite2 English Channel
問題文全文(内容文):
「東大理三の塾講師役」隠された真の目的が判明!
この動画を見る 

福田の数学〜東北大学2025文系第3問〜四面体を拡張した四角錐の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

四面体$OABC$において、

$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b},\overrightarrow{OC}=\overrightarrow{c}$とする。

点$D$は

$\overrightarrow{AD}=3\overrightarrow{AB}+2\overrightarrow{AC}$を満たすとする。

このとき、以下の問いに答えよ。

(1)四面体$OABC$の体積を$V$とするとき、

四角錐$OABDC$の体積を$V$を用いて表せ。

(2)$\overrightarrow{OD}$を$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$で表せ。


(3)線分$AD$と線分$BC$の交点を$P$とするとき、

$\overrightarrow{OP}$を$\overrightarrow{b},\overrightarrow{c}$を用いて表せ。

(4)四面体$OABC$が$1$辺の長さ$1$の正四面体であるとき、

線分$OD$の長さを求めよ。

$2025$年東北大学文系過去問題
この動画を見る 

福田の数学〜東北大学2025理系第6問〜2つの正五角形の重なった図形の周の長さの最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$1$辺の長さが$1$の正五角形を$K$とする。

このとき、以下の問いに答えよ。

(1)$K$の対角線の長さを求めよ。

(2)$K$の周で囲まれた図形を$P$とする。

また、$P$を$K$の外接円の中心の周りに

角$\theta$だけ回転して得られる図形を$P_{\theta}$とする。

$P$と$P_{\theta}$の共通部分の周の長さを

$\ell_{\theta}$とする。

$\theta$が$0°\lt 72°$の範囲を動くとき、

$\ell_{\theta}$の最小値が$2\sqrt5$であることを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

【速報】東京大学が新学部を設立 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#東京大学#数学(高校生)#東京大学
指導講師: Morite2 English Channel
問題文全文(内容文):
【東大速報】70年ぶり!2027年秋に**新学部「College of Design」**を設立!全寮制・授業は全て英語・初の外国人学部長が誕生
この動画を見る 

福田の数学〜東北大学2025理系第5問〜球面上の点と軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$S$を$xyz$空間内の原点$O(0,0,0)$を中心とする

半径$1$の球面とする。

また、点$P(a,b,c)$を

点$(0,0,1)$とは異なる球面$S$上の点とする。

点$P$と点$N$を通る直線$\ell$と$xy$平面との

交点を$Q$とおく。

このとき、以下の問いに答えよ。

(1)点$Q$の座標を$a,b,c$を用いて表せ。

(2)$xy$平面上の点$(p,q,0)$と点$N$を通る直線を

$m$とする。

直線$m$と球面$S$の交点のうち、

点$N$以外の交点の座標を$p,q$を用いて表せ。

(3)点$\left(0,0,\dfrac{1}{2}\right)$を通り、

ベクトル$(3,4,5)$に直交する

平面$\alpha$を考える。

点$P$が平面$\alpha$ト球面$S$との交わりを動くとき、

点$Q$は$xy$平面上の円周上を動くことを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜東北大学2025理系第4問〜2曲線の相接と面積の極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$n$を正の整数、$a$を正の実数とし、

関数$f(x)$と$g(x)$を次のように定める。

$f(x)=n\log x,\quad g(x)=ax^n$

また、曲線$y=f(x)$と曲線$y=g(x)$が共有点をもち、

その共有点における

$2$つの曲線の接線が一致しているとする。

このとき、以下の問いに答えよ。

(1)$a$の値を求めよ。

(2)この$2$つの曲線と$x$軸で囲まれた部分の面積

$S_n$を求めよ。

(3)$\quad $(2)で求めた$S_n$に対し、極限$\displaystyle \lim_{n\to\infty}S_n$を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜東北大学2025理系第3問〜4次関数が極大値をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a$を実数とし、関数$f(x)$を次のように定める。

$f(x)=x^4+\dfrac{4a}{3}x^3+(a+2)x^2$

このとき、以下の問いに答えよ。

(1)関数$f(x)$が極大値をもつような$a$のとり得る

値の範囲を求めよ。

(2)関数$f(x)$が$x=0$で極大値をもつような

$a$のとり得る値の範囲を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜東北大学2025理系第2問〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

正の実数からなる$2$つの数列$\{x_n\},\{y_n\}$を

次のように定める。

$x_1=2,y_1=\dfrac{1}{2},x_{n+1}=(y_n)^5・(y_n)^2,$

$ \hspace{ 80pt } y_{n+1}=x_n・(y_n)^6$

このとき、以下の問いに答えよ。

(1)$k$を実数とする。

$a_n=\log_2 x_n,b_n=\log_2 y_n$とおく。

このとき、$\{a_n+kb_n\}$が等位数列になるような

$k$の値をすべて求めよ。

(2)数列$\{x_n\}$の一般項を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜東北大学2025理系第1問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

原点を出発点として数直線上を動く点$P$がある。

試行(*)を次のように定める。


(*)

$1$枚の硬貨を$1$回投げて、
・表が出た場合は点$P$を正の向きに$1$だけ進める。
・裏が出た場合は$1$個のさいころを$1$回投げ、
 奇数の目が出た場合は点$P$を正の向きに$1$だけ進める
 偶数の目が出た場合は点$P$を負の向きに$2$だけ進める


ただし、硬貨を投げたとき裏表の出る確率は

それぞれ$\dfrac{1}{2}$,さいころを投げたとき

$1$から$6$までの整数の目の出る確率は

それぞれ$\dfrac{1}{6}$とする。

(1)試行(*)を$3$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(2)試行(*)を$6$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(3)$n$を$3$で割り切れない正の整数とする。

試行(*)を$n$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜北海道大学2025文系第4問〜関数方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

関数$f(x)$は、

すべての実数$x$およびすべての整数$n$について

$f(nx)={f(x)}^n$を満たし、

さらに$f(1)=2$を満たすとする。

ただし、$f(x)$のとりうる値は$0$でない実数とする。

(1)$f(n) \leqq 100$となるような最大の整数$n$を求めよ。

(2)すべての実数$x$について

$f(x)\gt 0$であることを証明せよ。

(3)$f(0.25)$を求めよ。

(4)$a$が有理数のとき、$f(a)$を$a$で表せ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜北海道大学2025文系第3問〜3項間漸化式と数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

数列$\{a_n\}$を次のように定める。

$a_1=1,a_2=3,$

$(n+1)a_{n+2}-(2n+3)a_{n+1}+(n+2)a_n=0$

$\qquad (n=1,2,3,・・・・・・)$

(1)$b_n=a_{n-1}-a_n$とおくと、

$b_{n+1}=\dfrac{n+2}{n+1}b_n \quad (n=1,2,3,・・・・・・)$

が成り立つことを示せ。

(2)数列$\{a_n\}$の一般項を求めよ。

(3)$\displaystyle \sum_{n=1}^{225}\dfrac{1}{a_n}$の値を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜北海道大学2025文系第2問〜数え上げと余弦定理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$は条件

$2\leqq a \lt b \lt c \leqq 6$を満たすとする。

(1)不等式$a+b\gt c$を満たすような

$(a+b+c)$をすべて挙げよ。

(2)不等式$a^2+b^2\geqq c^2$を満たすような

$(a+b+c)$をすべて挙げよ。

(3) (2)で求めた$(a,b,c)$について、

頂点$A,B,C$と向かい合う辺の長さがそれぞれ

$a,b,c$で与えられる$\triangle ABC$を考える。

このようなすべての$\triangle ABC$について

$\cos \angle ACB$を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜北海道大学2025文系第1問〜関数の増減と接線の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

関数$f(x)=x^3-6x^2-15x+30$について考える。

$y=f(x)$のグラフを$C$とおく。

(1)$f(x)$が極大値、

極小値をとるような$x$をそれぞれ求め、

$f(x)$の極大値、極小値を求めよ。

(2)$C$上の点$(-3,-6)$を通り、

$C$に接する直線の方程式をすべて求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 

福田の数学〜北海道大学2025理系第3問〜部分積分と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

実数$a$および自然数$n$に対して、定積分

$I(a,n)=\displaystyle \int_{0}^{2\pi} e^{ax} \sin (nx) dx$

を考える。ここで$e$は自然対数の底である。

(1)$I(a,n)$を求めよ。

(2)$a_n=\dfrac{\log _n}{2\pi} (n=1,2,3,\cdots)$のとき、

極限$\displaystyle \lim_{n\to\infty} I(a_n,n)$を求めよ。

ただし、$\log_n$は$n$の自然対数である。

また、必要ならば$\displaystyle \lim_{n\to\infty}\dfrac{\log_n}{n}=0$である

ことを用いてもよい。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$a$を正の実数とする。

(1)$a$が$1$でないとき、複素数$z$についての方程式

$a \vert z-1 \vert = \vert (a-2)z +a \vert$

を考える。

この方程式を満たす$z$全体の集合を

複素数平面上に図示せよ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

円$C_1:x^2+y^2=1$を考える。

実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、

点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の

接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。

また、座標平面上の原点を$O(0,0)$とする。

(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた

四角形の面積$S$を$p,q$を用いて表せ。

(2)点$P$が楕円

$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$

の上を動くとき、

(1)の四角形の面積$S$の最大値と最小値を求めよ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。

数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。

数列$\{b_n\}$を

$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。

(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の数学〜京都大学2025文系第5問〜平面が定点を通ることの証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#恒等式・等式・不等式の証明#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標空間の$4$点$O,A,B,C$同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$

が成り立つようにとる。

$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点を通ることを示せ。

$2025$年京都大学文系過去問題
この動画を見る 

533333333素因数分解できる?

アイキャッチ画像
単元: #大学入試過去問(数学)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
素因数分解せよ。
(1)3999

(2)40401

(3)533333333
この動画を見る 

【祝早稲田合格】和男の勉強法と参考書を紹介【大学受験プロジェクト】新メンバーも募集

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#早稲田大学#数学(高校生)#理科(高校生)#早稲田大学#早稲田大学
指導講師: Morite2 English Channel
問題文全文(内容文):
衝撃スクープ!浪人を経てついに**早稲田合格**を勝ち取った**かず(和男)**の壮絶な裏側が暴露されるぞ!

藤川天のネガキャンで荒れ果てたチャンネルを、かずさんの合格がなんとか回復させたらしい。モリテツ先生が、合格祝いとして**早稲田大学の入学金20万円**を札束で直接手渡しする、生々しいシーンから動画がスタートだ。

かずさんの受験は波乱万丈だ。現役時代、**12月という超直前期**に塾に駆け込み、短期間でやれることだけを進捗管理してもらい、立教大学に合格。しかし進学はせず浪人を選んだ。

浪人中は、計画は**自分で組み**、川井先生に定期的に進捗確認や「本当に理解しているのか」を問う**質疑形式**でサポートを受けていた。数学に関してはレベルが高すぎて、もはや先生と**議論**するほどだったという。

使っていた参考書は、新しく買ったものはほとんどなく、浪人までにやったものを**クオリティを上げる作業**が中心だった。

* **単語帳**は『パス単』の1級レベルまで仕上げた。
* **数学**は『チャート』や『プラチカ』のハイレベルな部分で取りこぼしていたところを埋めた。
* **国語**(古文・漢文)は『古文上達 基礎編』や『漢文ヤマのヤマ』といった、**ド基礎**を時間をかけて染み込ませることに注力した。

そして最大の衝撃事実!かずさんは親に**内緒で受験**しており、なんと**合格発表の前日**までバレていなかった。親が心配で大学の入試情報を調べていたところ、息子がYouTubeに登場しているのを発見したという爆笑エピソードも飛び出した。

ついに始まる早稲田生活。入学式は**富山キャンパスの早稲田アリーナ**で行われるという。モリテツ先生とのTOEICプロジェクト始動の可能性 や、サークルは**テニサーではなく剣道を見に行く**という宣言にも注目だ。
この動画を見る 

【慶應文学部あめりあてゃ】1浪2留の末についに進級!

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#慶應義塾大学#数学(高校生)#理科(高校生)#慶應義塾大学#慶應義塾大学#小論文(高校生)#慶應義塾大学
指導講師: Morite2 English Channel
問題文全文(内容文):
藤川天を置き去りにした衝撃展開!**慶應文学部「あめりあてゃ」**のヤバすぎる大学生活が暴露されたぞ。

1浪2留(1年生を3回!)の末、ついに**「仮進級」**を勝ち取ったあめりあてゃ。しかし、喜びの裏には地獄があった!

* **慶應文学部は1年から2年への進級が鬼ムズ**。
* 彼女は語学を2つ(フランス語とドイツ語)も取っていたという**「バカじゃないの」な選択**をしていた。そのうち1科目ずつ落としたため、「仮進級」扱いとなった。
* しかも彼女、GPAは**「0.5」**という信じられない低さ!視力並みに悪いGPAで、人気の「美学美術」(ビビ)への進学は断念。
* 第一志望のビビへの発表を駅の改札で見て、**泣き叫んだ**というエピソードも。
* 結局、第二希望の**西洋史学**に進むことに。

さらに彼女は、**アイドル活動を半年で解散**していたことも判明。すぐに問題が起こり、揉めて解散したらしい。

そして衝撃の事実!彼女は3年間も慶應にいるのに、**三田キャンパスに一度も行ったことがない**というから驚きだ。

次なる目標は**ミスコン出場**!モリテツチャンネル出身者はミスコン・ミスターコン率100%のため、ぜひ出場してほしいと先生たちから強く勧められているぞ。

そして動画のラストには、合格祝いとしてモリテツ先生と**サンリオピューロランドに行く約束**が浮上!ピューロランド編が爆誕する可能性も出てきたぞ。
この動画を見る 

福田の数学〜京都大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$n$は正の整数とする。

$1$枚の硬貨を投げ、

表が出たら$1$、裏が出たら$2$と記録する。

この試行を$n$回繰り返し、

記録された順に数字を左から

並べて$n$桁の数$X$を作る。

ただし、数の表し方は十進法とする。

このとき、$X$が$6$で割り切れる確率を求めよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田の数学〜京都大学2025文系第2問〜恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a,b$についての次の条件(*)を考える。

(*)ある実数係数の$2$次式$f(x)$と、

ある実数$c$に対して、

$x$についての恒等式

$\dfrac{1}{8}x^4+ax^3+bx^2=f(f(x))+c \cdots ①$

が成り立つ。

この条件(*)を満たす点$(a,b)$全体の集合を

座標平面上に図示せよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田の数学〜京都大学2025文系第1問(2)〜整数の割り算で割り切れる条件

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(2)$n^4+6n^2+23$が$n^2+n+3$で

割り切れるような正の整数$n$をすべて求めよ。

$2025$年京都大学文系過去問題
この動画を見る 

福田の数学〜京都大学2025文系第1問(1)〜指数・対数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$x,y,z$は実数で

$2025^x=3^y=5^z$を満たすとする。

このとき、

$2xy+4xz-yz=0$であることを示せ。

$2025$年京都大学文系過去問題
この動画を見る 

2025年高校別早稲田大学合格者数ランキング #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#早稲田大学#数学(高校生)#理科(高校生)#早稲田大学#早稲田大学
指導講師: Morite2 English Channel
問題文全文(内容文):
2025年版!高校別早稲田大学合格者数ランキング速報がヤバい!

早稲田大学合格者数の2025年版!高校別早稲田大学合格者数ランキング速報がヤバい!

早稲田大学合格者数の高校別ランキング上位20位が判明したぞ。

栄えある第1位は、今年も**早稲田高校**で、なんと**250人**合格という圧倒的な強さを見せつけた。東大のモデルにしているところが賢いらしい。

第2位は**栄東高校**(埼玉)で228人。所沢キャンパスが近くにあるのも影響しているようだ。

そして、東大でもめちゃくちゃ伸びた**横浜翠嵐高校**(神奈川)が第3位にランクインし、171人を合格させている。第4位は**聖光学院**(神奈川)の170人、第5位は早稲田合格者数で有名な**市川高校**で164人だ。

その他の注目校は以下の通り!

* 第6位:本郷 (145人)
* 第7位:洗足学園 (神奈川, 136人)
* 第8位:千葉県立千葉 (123人)
* 第10位:**渋渋(渋谷教育学園渋谷)**が120人で、今年も強い。
* 第14位:**県立船橋**(千葉)が111人で、公立校も食い込んでいる。

このランキングを見れば、早稲田を目指すならどこに行くべきか一目瞭然だ!
この動画を見る 

【全入か全落ちか】藤川天の日大国際関係3期・高千穂大学の合格発表生配信

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
藤川天さんが大学に合格したかどうかライブ配信で届けます
この動画を見る 

福田の数学〜京都大学2025理系第6問〜確率確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$n$は$2$以上の整数とする。

$1$枚の硬貨を続けて$n$回投げる。

このとき、$k$回目$(1\leqq l \leqq n)$に表が出たら

$X_k=1$、裏が出たら$X_k=0$として、

$X_1,X_2,\cdots ,X_n$を定める。

$Y_n=\displaystyle \sum_{k-2}^{n} X_{k-1}X_k$とするとき、

$Y_n$が奇数である確率$p_n$を求めよ。

$2025$年京都大学理系過去問題
この動画を見る 
PAGE TOP