実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)

【高校数学】数Ⅰ-16 √(ルート)シリーズ④(二重根号編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
この動画を見る
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
【高校数学】数Ⅰ-15 √(ルート)シリーズ③(応用編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
この動画を見る
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
この動画を見る
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
この動画を見る
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
【高校数学】数Ⅰ-12 絶対値

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
この動画を見る
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
【For you 動画-13】 高1-二重根号・絶対値 (数Ⅰ)

単元:
#数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$\sqrt{ 4-2\sqrt{ 3 } }=$
②$\sqrt{11+ \sqrt{ 72 } }=$
③$\sqrt{ 4-\sqrt{15 } }=$
④$\vert x \vert=6$
⑤$\vert x \vert \lt 6$
⑥$\vert x \vert \geqq 6$
⑦$\vert x -8 \vert \leqq 3$
⑧$\vert 2x-6 \vert \lt 8$
⑨$\vert 3x-1 \vert \geqq 4$
この動画を見る
計算せよ。
①$\sqrt{ 4-2\sqrt{ 3 } }=$
②$\sqrt{11+ \sqrt{ 72 } }=$
③$\sqrt{ 4-\sqrt{15 } }=$
④$\vert x \vert=6$
⑤$\vert x \vert \lt 6$
⑥$\vert x \vert \geqq 6$
⑦$\vert x -8 \vert \leqq 3$
⑧$\vert 2x-6 \vert \lt 8$
⑨$\vert 3x-1 \vert \geqq 4$