数Ⅰ

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

単元:
#数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}
2021早稲田大学人間科学部過去問
【数学Ⅰ/テスト対策】絶対値を含む方程式・不等式①

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$|x+3|=2$
(2)$|3-x| \leqq 5$
(3)$|3x+2| \gt 7$
この動画を見る
次の方程式、不等式を解け。
(1)$|x+3|=2$
(2)$|3-x| \leqq 5$
(3)$|3x+2| \gt 7$
福田のわかった数学〜高校1年生033〜背理法(1)

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 背理法(1)\\
\sqrt2,\ \sqrt[3]3 が無理数であることを証明せよ。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 背理法(1)\\
\sqrt2,\ \sqrt[3]3 が無理数であることを証明せよ。
\end{eqnarray}
よく間違える二次不等式

【中学数学】平方根・ルートの問題演習~計算の仕方~ 2-4.5【中3数学】

単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$\sqrt{ 147 }-\sqrt{ 27 }-\sqrt{ 48 }$
2⃣
$\displaystyle \frac{2\sqrt{ 6 }}{3} \div \displaystyle \frac{4\sqrt{ 2 }}{3} \times \displaystyle \frac{7\sqrt{ 5 }}{2}$
この動画を見る
1⃣
$\sqrt{ 147 }-\sqrt{ 27 }-\sqrt{ 48 }$
2⃣
$\displaystyle \frac{2\sqrt{ 6 }}{3} \div \displaystyle \frac{4\sqrt{ 2 }}{3} \times \displaystyle \frac{7\sqrt{ 5 }}{2}$
灘高校の式の値 伝えたいこと、たくさん

単元:
#数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-y^2=6(x-y)$ , $x^2+y^2 = 22$ (x>y)
$x-y=?$
$x^4-y^4+2x^3+2y^3=?$
灘高等学校
この動画を見る
$x^2-y^2=6(x-y)$ , $x^2+y^2 = 22$ (x>y)
$x-y=?$
$x^4-y^4+2x^3+2y^3=?$
灘高等学校
【中学数学】平方根・ルートの足し算をどこよりも分かりやすく 2-4.5【中3数学】

単元:
#数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$5 \times 2\sqrt{ 3 }$
2⃣
$5\sqrt{ 2 }+7\sqrt{ 2 }$
3⃣
$2\sqrt{ 3 }+5\sqrt{ 2 }+3\sqrt{ 3 }+\sqrt{ 2 }$
この動画を見る
1⃣
$5 \times 2\sqrt{ 3 }$
2⃣
$5\sqrt{ 2 }+7\sqrt{ 2 }$
3⃣
$2\sqrt{ 3 }+5\sqrt{ 2 }+3\sqrt{ 3 }+\sqrt{ 2 }$
4の累乗の和で平方数を作れ

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,n$は自然数である.
$4^a+4^b+4^c=n^2$
$10\lt a\lt b\lt c$を満たす$(a,b,c)$を1組与えよ.
この動画を見る
$a,b,c,n$は自然数である.
$4^a+4^b+4^c=n^2$
$10\lt a\lt b\lt c$を満たす$(a,b,c)$を1組与えよ.
補助線を引け!解説2通り

福田のわかった数学〜高校1年生032〜否定分の作り方(2)

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(2)\\
次の関数f(x)についての命題を否定せよ。\\
\\
「N以上の全ての自然数nについてf(n) \leqq 2」\\
が成り立つような自然数Nが存在する。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(2)\\
次の関数f(x)についての命題を否定せよ。\\
\\
「N以上の全ての自然数nについてf(n) \leqq 2」\\
が成り立つような自然数Nが存在する。
\end{eqnarray}
垂線の長さの和=❓ B

単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
DE+EF=?
*図は動画内参照
東北学院高等学校
この動画を見る
DE+EF=?
*図は動画内参照
東北学院高等学校
【背理法はこう解け!】背理法の考え方と解法のテンプレはこうだ!【高校数学 数学】

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$\sqrt{ 3 }$が無理数なことを証明せよ
この動画を見る
$\sqrt{ 3 }$が無理数なことを証明せよ
福田の数学〜早稲田大学2021年人間科学部第2問(2)〜3辺の長さから三角形の面積を求める

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)3辺の長さがそれぞれ5,16,19の三角形の面積は\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}} (2)3辺の長さがそれぞれ5,16,19の三角形の面積は\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }} である。
\end{eqnarray}
2021早稲田大学人間科学部過去問
華麗に解こう

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
この動画を見る
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}
2021早稲田大学商学部過去問
福田のわかった数学〜高校1年生031〜否定分の作り方(1)

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(1)\\
次の命題を否定せよ。\\
砂糖は甘い。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 否定分の作り方(1)\\
次の命題を否定せよ。\\
砂糖は甘い。
\end{eqnarray}
平均値より中央値の話

どっちがでかい?階乗の累乗根

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
どちらが大きい?
$\sqrt[8]{8!}$ VS $\sqrt[7]{7!}$
この動画を見る
どちらが大きい?
$\sqrt[8]{8!}$ VS $\sqrt[7]{7!}$
自分で考えろ!

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$42\times 37$の計算の様々なやり方に関して解説していきます.
この動画を見る
$42\times 37$の計算の様々なやり方に関して解説していきます.
数I 2次関数の最大に関する問題 (他の問題の解説もあり)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=-x^2+4x (a \leqq x \leqq a+2)$
(1)最大値=3となるaの値=?
(2)最大値=4となるaの範囲は?
この動画を見る
$y=-x^2+4x (a \leqq x \leqq a+2)$
(1)最大値=3となるaの値=?
(2)最大値=4となるaの範囲は?
素因数分解

奇数の平方の逆数の和になぜかあれが登場

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$である.
$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
この動画を見る
これを解け.$n\to \infty$である.
$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
この動画を見る
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
【集合はこれだけ!】集合の問題の解き方のコツはベン図!【高校数学 数学】

単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
全体集合$\cup=${$x|x$は10以下の自然数}とする
このとき、集合について以下のことが分かっている。
次の問いに答えよ
$A=${$1,3,4,6,8$}
$A \cap B=${$4,6,8$}
$A \cup B=${$1,2,3,4,6,7,8,9$}
(1)$B$
(2)$A \cap \overline{B}$
(3)$\overline{A \cup B}$
この動画を見る
全体集合$\cup=${$x|x$は10以下の自然数}とする
このとき、集合について以下のことが分かっている。
次の問いに答えよ
$A=${$1,3,4,6,8$}
$A \cap B=${$4,6,8$}
$A \cup B=${$1,2,3,4,6,7,8,9$}
(1)$B$
(2)$A \cap \overline{B}$
(3)$\overline{A \cup B}$
福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
累乗の桁数

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2^{1000}$は$m$桁
$5^{1000}$は$n$桁
$m+n=\boxed{?}$
この動画を見る
$2^{1000}$は$m$桁
$5^{1000}$は$n$桁
$m+n=\boxed{?}$
ドラゴン桜 東大模試数学

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^3+b^3-3ab=2020$を満たす自然数$a,b$は存在するか.
東大模試過去問
この動画を見る
$a^3+b^3-3ab=2020$を満たす自然数$a,b$は存在するか.
東大模試過去問
福田のわかった数学〜高校1年生029〜いろいろなグラフ(3)

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(3)\\
0 \leqq x \leqq 16の範囲で、\\
y=x[\sqrt x] のグラフを描け。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(3)\\
0 \leqq x \leqq 16の範囲で、\\
y=x[\sqrt x] のグラフを描け。
\end{eqnarray}
【2次関数の応用問題はこう解く!】最大値と最小値の応用問題を図でイメージする方法を解説!【高校数学 数学】

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
この動画を見る
①
$a \gt 0$のとき、$y=x^2-4x+3(0 \leqq x \leqq a)$の最小値を求めよ
②
$a \gt 0$のとき、$y=-x^2+2ax-a^2+2$の$0 \leqq x \leqq 2$での最大値を求めよ
紙を何回折るとスカイツリーの高さになるのか計算すると意外な結果に

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
紙を何回折ると、スカイツリーの高さを超えるのか。
この動画を見る
紙を何回折ると、スカイツリーの高さを超えるのか。