場合の数と確率
場合の数 エレガントに解こう
【数学A】確率_これで共テ瞬殺!【確率のイメージ】【共通テスト】
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
この動画を見て共通テストの確率問題を攻略しよう!
この動画を見る
この動画を見て共通テストの確率問題を攻略しよう!
東大 確率ジャンケン
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.
1971東大過去問
この動画を見る
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.
1971東大過去問
【数A】場合の数:完全順列! 5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。
この動画を見る
5人に招待状を送るため、あて名を書いた招待状と、それを入れるあて名を書いた封筒を作成した。招待状を間違った封筒に入れる方法は何通りあるか。
【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
【数A】場合の数:出目の積! 大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
この動画を見る
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
一橋大 確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.
1996一橋大過去問
この動画を見る
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.
1996一橋大過去問
サイコロ確率
【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
【高校数学】原因の確率~病原菌の問題~ 2-9【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
この動画を見る
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率
-----------------
2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
この動画を見る
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率
-----------------
2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
確率 サクッと出そう
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
コインを2枚投げて2枚とも表なら2点それ以外は1点とする.
9回投げて得点の合計が偶数となる確率を求めよ.
この動画を見る
コインを2枚投げて2枚とも表なら2点それ以外は1点とする.
9回投げて得点の合計が偶数となる確率を求めよ.
【高校数学】条件付き確率例題~組合せを使おう~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
この動画を見る
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
【高校数学】条件付き確率例題~標準問題解いてこ~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。
-----------------
2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
この動画を見る
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。
-----------------
2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率
-----------------
2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。
-----------------
3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率
-----------------
2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。
-----------------
3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
【高校数学】確率の乗法定理~改めて確認しよう~ 2-8【数学A】
単元:
#数A#場合の数と確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
当たりくじを3本含む10本のくじの中から引いたくじをもとに戻さないで、
1本ずつ2回続けてくじを引く。2本とも当たる確率を求めよ。
この動画を見る
当たりくじを3本含む10本のくじの中から引いたくじをもとに戻さないで、
1本ずつ2回続けてくじを引く。2本とも当たる確率を求めよ。
【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。
選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
この動画を見る
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。
選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
【高校数学】反復試行の確率例題~一緒に解いてもやもや解決~ 2-6.5【数学A】
単元:
#数A#場合の数と確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率
-----------------
2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。
-----------------
3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
この動画を見る
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率
-----------------
2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。
-----------------
3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
【高校数学】反復試行の確率~今までとの違いとつながり~ 2-6【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
この動画を見る
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
【高校数学】独立な試行の確率の例題~基本的なものを一緒に解こう~ 2-5.5【数学A】
単元:
#数A#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
A, Bの2人が検定試験を受けるとき、合格する確率がそれぞれ$\displaystyle \frac{2}{5},\displaystyle \frac{3}{4}$ある。
このとき、次の確率を求めよ。
(a) 2人とも合格する確率
(b) Aだけが合格する確率
(c) 少なくとも1人が合格する確率
-----------------
2⃣
Aの袋には黒玉5個と白玉4個、Bの袋には黒玉6個と白玉4個が入っている。
Aから2個、Bから3個玉を取り出すとするとき、黒玉の個数が合わせて
2個になる確率を求めよ。
この動画を見る
1⃣
A, Bの2人が検定試験を受けるとき、合格する確率がそれぞれ$\displaystyle \frac{2}{5},\displaystyle \frac{3}{4}$ある。
このとき、次の確率を求めよ。
(a) 2人とも合格する確率
(b) Aだけが合格する確率
(c) 少なくとも1人が合格する確率
-----------------
2⃣
Aの袋には黒玉5個と白玉4個、Bの袋には黒玉6個と白玉4個が入っている。
Aから2個、Bから3個玉を取り出すとするとき、黒玉の個数が合わせて
2個になる確率を求めよ。
【高校数学】独立な試行の確率~イメージでいけんじゃね?~ 2-5【数学A】
【高校数学】確率の基本性質~余事象の確率~ 2-4【数学A】
単元:
#数A#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
15本のくじの中に当たりくじが5本ある。
この中から2本のくじを同時に引くとき、少なくとも1本は当たる確率を求めよ。
この動画を見る
15本のくじの中に当たりくじが5本ある。
この中から2本のくじを同時に引くとき、少なくとも1本は当たる確率を求めよ。
【高校数学】確率の基本性質~和事象の確率~ 2-3【数学A】
単元:
#数A#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から9までの番号をつけたカードが各数字3枚ずつ計27枚ある。
このカードから2枚を取り出すとき、2枚が同じ数字か2枚の数字の和が5以下である確率を求めよ。
この動画を見る
1から9までの番号をつけたカードが各数字3枚ずつ計27枚ある。
このカードから2枚を取り出すとき、2枚が同じ数字か2枚の数字の和が5以下である確率を求めよ。
【高校数学】確率の基本性質~排反~ 2-2 【数学A】
【高校数学】確率の例題~少し難しいやつ~ 2-1.5 【数学A】
単元:
#数A#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
5人がじゃんけんを1回するとき、次の確率を求めよ。
(a) 1人だけが勝つ確率
(b) 3人が勝つ確率
(c) あいこになる確率
-----------------
2⃣
赤玉と白玉が合わせて8個入った袋がある。
この袋の中から玉を2個同時に取り出すとき、赤玉の出ない確率が$\displaystyle \frac{5}{14}$こであるという。
袋の中には白玉は何個入っているか。
この動画を見る
1⃣
5人がじゃんけんを1回するとき、次の確率を求めよ。
(a) 1人だけが勝つ確率
(b) 3人が勝つ確率
(c) あいこになる確率
-----------------
2⃣
赤玉と白玉が合わせて8個入った袋がある。
この袋の中から玉を2個同時に取り出すとき、赤玉の出ない確率が$\displaystyle \frac{5}{14}$こであるという。
袋の中には白玉は何個入っているか。
【高校数学】確率の例題~順列と組合せ使おうぜ~ 2-1.5【数学A】
単元:
#数A#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
赤玉5個、白玉4個、青玉3個が入った袋から、玉を3個同時に取り出すとき、
次の確率を求めよ。
(a)すべての赤玉が出る確率
(b)赤玉1個と白玉2個が出る確率
(c)どの色の玉も出る確率
-----------------
2⃣
40人のクラスで委員長と副委員長を選ぶとき、特定の4人の中の2人が選ばれる
確率を求めよ。
-----------------
3⃣
SUNDAYの6文字を1列に並べるとき、次の確率を求めよ。
(a)両端が母音である確率
(b)SとYが隣り合う確率
(c)SがYよりも左側にある確率
この動画を見る
1⃣
赤玉5個、白玉4個、青玉3個が入った袋から、玉を3個同時に取り出すとき、
次の確率を求めよ。
(a)すべての赤玉が出る確率
(b)赤玉1個と白玉2個が出る確率
(c)どの色の玉も出る確率
-----------------
2⃣
40人のクラスで委員長と副委員長を選ぶとき、特定の4人の中の2人が選ばれる
確率を求めよ。
-----------------
3⃣
SUNDAYの6文字を1列に並べるとき、次の確率を求めよ。
(a)両端が母音である確率
(b)SとYが隣り合う確率
(c)SがYよりも左側にある確率
【高校数学】確率の基本事項~記号とか考え方~ 2-1【数学A】
【高校数学】重複を許して取る組合せの例題~必死に解くで~ 1-12.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。
2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$
3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
この動画を見る
1⃣
袋の中に赤玉,青玉,白玉,黒玉がたくさん入ってる。
この袋から7個の玉を取り出すとき、玉の取り出し方は何通りあるか。
2⃣
1個のさいころを3回投げ、出た目を順に$a,b,c$とする。
次の場合は何通りあるか。
(i) $a \lt b \lt c$
(ii) $a \leqq b \leqq c$
3⃣
次の場合を満たす$x,y,z$は何通りか
(i) $x + y + z = 9, x,y,z$は負でない整数
(ii) $x + y + z = 15, x,y,z$は正の整数
【高校数学】重複を許して取る組合せ~公式を意識しないで解く~ 1-12【数学A】
【高校数学】同じものを含む順列の例題~最短経路の問題~ 1-11.5【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R, Sをともに通る経路
(4)RまたはSを通る経路
(5)R, Sをともに通らない経路
(6)☆印の箇所を通らない経路
この動画を見る
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。
(1)総数
(2)Rを通る経路
(3)R, Sをともに通る経路
(4)RまたはSを通る経路
(5)R, Sをともに通らない経路
(6)☆印の箇所を通らない経路