微分法と積分法
微分法と積分法
高専数学 微積I #226(2) 媒介変数表示の面積

単元:
#数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{4}$とする.
曲線$x=\tan t,y=\sin t+1$と
$x$軸,$y$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
この動画を見る
$0\leqq t\leqq \dfrac{\pi}{4}$とする.
曲線$x=\tan t,y=\sin t+1$と
$x$軸,$y$軸,直線$x=1$で囲まれた図形の
面積$S$を求めよ.
ε N論法 #6 1-n^2(n→∞)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
この動画を見る
$\displaystyle \lim_{n\to\infty}(1-n^2)=-\infty$
$ε N$論法で証明せよ.
ε N論法 #5 √n(n→∞)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
高専数学 微積I #226(1) 媒介変数表示の面積

単元:
#数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
この動画を見る
$0\leqq t\leqq 1$とする.
曲線$x=t^2,y=t^2-2t+1$
$x$軸,$y$軸で囲まれた図形の
面積$S$を求めよ.
【数Ⅱ】 微分法と積分法:2021年高3第1回K塾記述模試

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
この動画を見る
関数f(x)を次の式で定める。ただし、kは正の定数である。$f(x)=kx^3-4x^2+x+k^2$ 原点をOとする座標平面上において、曲線$C:y=f(x)$とy軸の交点をAとし、Aにお けるCの接線と垂直でAを通る直線をlとする。
(1)lの方程式を求めよ。
(2)Cとlが A以外に2点で交わるとする。このとき、kの値の範囲を求めよ。
(3)(2)のとき、CとlのA以外の2交点をP、Qとし、三角形OPQの面積をSとする。kが(2)で求めた範 囲を変化するとき、Sの最大値を求めよ。
高専数学 微積I #218 曲線の長さの最小値 (九州大学類題)

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)=\dfrac{e^x+e^{-x}}{2} \ (\alpha \leqq x \leqq \alpha+1)$
の曲線の長さ$k(\alpha)$の最小値を求めよ.
この動画を見る
$f(x)=\dfrac{e^x+e^{-x}}{2} \ (\alpha \leqq x \leqq \alpha+1)$
の曲線の長さ$k(\alpha)$の最小値を求めよ.
高専数学 微積I #211 体積

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
半径$r$の直円柱を底面の直径$AB$を通り
底面と$\dfrac{\pi}{6}$の角をなす平面で切るとき,
底面と平面の間の部分の体積$V$を求めよ.
この動画を見る
半径$r$の直円柱を底面の直径$AB$を通り
底面と$\dfrac{\pi}{6}$の角をなす平面で切るとき,
底面と平面の間の部分の体積$V$を求めよ.
高専数学 微積I #210(2) 曲線の長さ

単元:
#数Ⅱ#平面上の曲線#微分法と積分法#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
$2\leqq x\leqq 3$
曲線$y=\log (x+\sqrt{x^2-1})$の長さ$\ell$を求めよ.
この動画を見る
$2\leqq x\leqq 3$
曲線$y=\log (x+\sqrt{x^2-1})$の長さ$\ell$を求めよ.
高専数学 微積I #210(1) 曲線の長さ

単元:
#数Ⅱ#平面上の曲線#微分法と積分法#数学(高校生)#数C
指導講師:
ますただ
問題文全文(内容文):
曲線$y=(x-1)^{\frac{3}{2}} \ (1\leq x \leq 6)$
の長さ$\ell$を求めよ.
この動画を見る
曲線$y=(x-1)^{\frac{3}{2}} \ (1\leq x \leq 6)$
の長さ$\ell$を求めよ.
ε-N論法 #3 lim n/n+2 =1

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
ε-N論法 #2 lim 1/n^2=0

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
高専数学 微積I #207 体積

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
点$x(0\lt x\lt \pi)$で$x$軸に垂直な平面で切った切り口が,
辺の長さが$x,\sin x$の長方形である立体の体積$V$を求めよ.
この動画を見る
点$x(0\lt x\lt \pi)$で$x$軸に垂直な平面で切った切り口が,
辺の長さが$x,\sin x$の長方形である立体の体積$V$を求めよ.
ε-N論法 #1 lim1/n=0

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n}=0$を
$ε-N$論法を利用して示せ.
ε-N論法 #4 はさみうちの原理

単元:
#数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
この動画を見る
各自然数$n$で$a_n \leqq b_n \leqq c_n$を
満たす任意の数列
{$a_n$},{$b_n$},{$c_n$}に対して
$\displaystyle \lim_{n\to\infty} a_n=A=\displaystyle \lim_{n\to\infty} c_n$
ならば
$\displaystyle \lim_{n\to\infty} b_n=A$
ε-N論法で証明せよ.
高専数学 微積I #206 体積

単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
3辺の長さが3,4,5の三角形を底面とする高さが
10の三角錐の体積$V$を求めよ.
この動画を見る
3辺の長さが3,4,5の三角形を底面とする高さが
10の三角錐の体積$V$を求めよ.
高専数学:微積I #205 曲線の長さ

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
次の曲線の長さ$\ell$を求めよ.
(1)$y=\dfrac{1}{3} (x+1)^{1\frac{3}{2}} (-1\leqq x\leqq 4)$
(2)$y=\dfrac{1}{3}x^3+\dfrac{1}{4x} (1\leqq x\leqq 3)$
この動画を見る
次の曲線の長さ$\ell$を求めよ.
(1)$y=\dfrac{1}{3} (x+1)^{1\frac{3}{2}} (-1\leqq x\leqq 4)$
(2)$y=\dfrac{1}{3}x^3+\dfrac{1}{4x} (1\leqq x\leqq 3)$
高専数学:微積I #204 曲線の長さ

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
曲線$y=e^{\frac{x}{2}}+e^{-\frac{x}{2}} (0\leqq x\leqq 2)$
の長さ$\ell$を求めよ.
この動画を見る
曲線$y=e^{\frac{x}{2}}+e^{-\frac{x}{2}} (0\leqq x\leqq 2)$
の長さ$\ell$を求めよ.
兵庫県教員採用試験(数学:12番 極限値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
この動画を見る
$\boxed{12}$
$\displaystyle \int_{0}^{\infty} \ x\ e^{-x} dx$を求めよ.
*$\displaystyle \lim_{t\to\infty}\dfrac{t}{e^t}=0$は利用してよい.
琉球大 積分 計算の工夫

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
この動画を見る
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.
2021琉球大過去問
岡山県教員採用試験:数学 極限値

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \left(\sin\sqrt{x+a}-\sin\sqrt x\right)$
の値を求めよ.
この動画を見る
$\displaystyle \lim_{x\to\infty} \left(\sin\sqrt{x+a}-\sin\sqrt x\right)$
の値を求めよ.
15兵庫県教員採用試験(数学 極値)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$k\gt 0$とする.
$f(x)=x^3-3k^2x$は極値をもち
極大値は16である$k$の値を求めよ.
この動画を見る
$k\gt 0$とする.
$f(x)=x^3-3k^2x$は極値をもち
極大値は16である$k$の値を求めよ.
極限 中国人民大学

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
この動画を見る
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$
中国人民大学過去問
練習問題30 積分(y軸回転体) 数検 教採

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#その他#不定積分・定積分#数学検定#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$y=\log(x+1),y=3$
$y$軸で囲まれた部分を$y$軸を中心として
回転したときの体積$V$を求めよ.
この動画を見る
$y=\log(x+1),y=3$
$y$軸で囲まれた部分を$y$軸を中心として
回転したときの体積$V$を求めよ.
#19数検準1級 極限値(はさみうちの原理)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
この動画を見る
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
数学「大学入試良問集」【12−6 放物線と接線で囲まれた面積】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京都立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
この動画を見る
$y=x^2$のグラフを$r$とする。
$b \lt a^2$をみたす点$P(a,b)$から$r$へ接線を2本引き、接点を$A,B$とする。
$r$と2本の線分$PA,PB$で囲まれた図形の面積が$\displaystyle \frac{2}{3}$になるような点$P$の軌跡を求めよ。
08大阪府教員採用試験(数学:4番 微分積分)

単元:
#数Ⅱ#微分法と積分法#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$0\leqq \theta \leqq 2\pi$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}$
のグラフをかき面積を求めよ.
この動画を見る
$\boxed{4}$
$0\leqq \theta \leqq 2\pi$とする.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}$
のグラフをかき面積を求めよ.
数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
この動画を見る
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
福田のわかった数学〜高校2年生023〜円の外部から引いた接線の求め方

単元:
#数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
この動画を見る
数学$\textrm{II}$ 円と接線
点$A(2,4)$から
円$C:(x+2)^2+(y-2)^2=10$
へ引いた接線の方程式を求めよ。
数学基礎40「積分と面積公式」【高校数学ⅡB】を宇宙一わかりやすく

数学「大学入試良問集」【12−4 共通接線と面積】を宇宙一わかりやすく

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$
以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
この動画を見る
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$
以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
