数Ⅱ
3乗根の方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$ x^3+1=2\sqrt[3]{2x-1}$
この動画を見る
実数解を求めよ.
$ x^3+1=2\sqrt[3]{2x-1}$
【数Ⅱ】三角形の重心の軌跡【除外点に注意しよう】
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
点Qが円$x^2+y^2=9$上を動くとき,
点$A(4,0)$と点Qを結ぶ線分AQの中点Pの軌跡を求めよ.
この動画を見る
点Qが円$x^2+y^2=9$上を動くとき,
点$A(4,0)$と点Qを結ぶ線分AQの中点Pの軌跡を求めよ.
【数学Ⅱ】繁分数式(分数の中に分数がある)
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を簡単にせよ。
(1)$\displaystyle \frac{x-2-\displaystyle \frac{2}{x-1}}{x+2+\displaystyle \frac{2}{x-1}}$
(2)$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
この動画を見る
次の式を簡単にせよ。
(1)$\displaystyle \frac{x-2-\displaystyle \frac{2}{x-1}}{x+2+\displaystyle \frac{2}{x-1}}$
(2)$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
対数の基本問題(近似値は使えません)
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$ \log_{10}2$が無理数であることを証明せよ.
(2)$2^{104}$は何桁か求めよ.
この動画を見る
(1)$ \log_{10}2$が無理数であることを証明せよ.
(2)$2^{104}$は何桁か求めよ.
指数の計算 log使わずに解ける
【わかりやすく】不等式の証明を解説(高校数学Ⅱ)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の不等式を証明せよ。
また、(2)で等号が成り立つのはどのようなときか。
(1)$x \gt 2,y \gt 3$のとき、$xy+6 \gt 3x+2y$
(2)$x^2+5y^2 \geqq 4xy$
この動画を見る
次の不等式を証明せよ。
また、(2)で等号が成り立つのはどのようなときか。
(1)$x \gt 2,y \gt 3$のとき、$xy+6 \gt 3x+2y$
(2)$x^2+5y^2 \geqq 4xy$
3乗根を外すだけ
単元:
#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
3乗根を外せ.
$ \sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
この動画を見る
3乗根を外せ.
$ \sqrt[3]{\dfrac{10-7\sqrt2}{10+7\sqrt2}}$
【わかりやすく】等式の証明(数学Ⅱ/等式の証明)
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等式を証明せよ。
(1)$4ab=(a+b)^2-(a-b)^2$
(2)$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2$
この動画を見る
次の等式を証明せよ。
(1)$4ab=(a+b)^2-(a-b)^2$
(2)$(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2$
解けるように作られた問題 ガウス少年なら一瞬
単元:
#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ f(x)=\dfrac{25^x}{25^x+5}$である.
$ f \left(\dfrac{1}{100}\right)+f \left(\dfrac{2}{100}\right)+
・・・・・・+f \left(\dfrac{98}{100}\right)+\left(\dfrac{99}{100}\right)$の値を求めよ.
この動画を見る
$ f(x)=\dfrac{25^x}{25^x+5}$である.
$ f \left(\dfrac{1}{100}\right)+f \left(\dfrac{2}{100}\right)+
・・・・・・+f \left(\dfrac{98}{100}\right)+\left(\dfrac{99}{100}\right)$の値を求めよ.
福田の数学〜東京工業大学2022年理系第3問〜直角三角形の頂点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}
2022東京工業大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ \alphaは0 \lt \alpha \lt \frac{\pi}{2}を満たす実数とする。\angle A=\alphaおよび\angle P=\frac{\pi}{2}を満たす直角三角形APB\\
が、次の2つの条件(\textrm{a}),(\textrm{b})を満たしながら、時刻t=0から時刻t=\frac{\pi}{2}まで\\
xy平面上を動くとする。\\
(\textrm{a})時刻tでの点A,Bの座標は、それぞれA(\sin t,0),B(0, \cos t)である。\\
(\textrm{b})点Pは第一象限内にある。\\
このとき、次の問いに答えよ。\\
(1)点Pはある直線上を動くことを示し、その直線の方程式を\alphaを用いて表せ。\\
(2)時刻t=0から時刻t=\frac{\pi}{2}までの間に点Pが動く道のりを\alphaを用いて表せ。\\
(3)xy平面内において、連立不等式\\
x^2-x+y^2 \lt 0, x^2+y^2-y \lt 0\\
により定まる領域をDとする。このとき、点Pは領域Dには入らないことを示せ。
\end{eqnarray}
2022東京工業大学理系過去問
【数学Ⅱ/高2の予習】恒等式
単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式が$x$についての恒等式となるように、定数$a,b,c$の値を求めよ。
(1)
$3x^2+8x+6=a(x+1)^2+b(x+1)+c$
(2)
$\displaystyle \frac{3}{(x-1)(2x+1)}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{b}{2x-1}$
この動画を見る
次の式が$x$についての恒等式となるように、定数$a,b,c$の値を求めよ。
(1)
$3x^2+8x+6=a(x+1)^2+b(x+1)+c$
(2)
$\displaystyle \frac{3}{(x-1)(2x+1)}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{b}{2x-1}$
うまい方法
単元:
#数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
この動画を見る
$ x^3+2x^2+3x+4=0$の3つの解を$ \alpha,\beta,\delta $とする.
$(\alpha^4-1)(\beta^4-1)(\delta^4-1)$の値を求めよ.
【数Ⅱ】軌跡の基本 アポロニウスの円【書き方と意味を理解しよう】
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ 点A(-1,0),点B(2,0)からの距離の比が2:1である点Pの軌跡を求めよ.$
この動画を見る
$ 点A(-1,0),点B(2,0)からの距離の比が2:1である点Pの軌跡を求めよ.$
どっちがでかい?
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 3^{3^{4}}$ VS $ 4^{4^{3}}$
どちらが大きいか求めよ.
*$ 3^5=243,2^8=256$
$ ell= \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right) \lt 3 $
この動画を見る
$ 3^{3^{4}}$ VS $ 4^{4^{3}}$
どちらが大きいか求めよ.
*$ 3^5=243,2^8=256$
$ ell= \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right) \lt 3 $
福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ kを実数の定数とし、\\
f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1\\
とする。\\
(1)f(k-1)の値を求めよ。\\
(2)|k|\lt 2のとき、不等式f(x) \geqq 0を解け。
\end{eqnarray}
2022北海道大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ kを実数の定数とし、\\
f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1\\
とする。\\
(1)f(k-1)の値を求めよ。\\
(2)|k|\lt 2のとき、不等式f(x) \geqq 0を解け。
\end{eqnarray}
2022北海道大学文系過去問
ただの対数方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_2 x+\log_3 x=1$
この動画を見る
これを解け.
$\log_2 x+\log_3 x=1$
ただの対数方程式
福田の数学〜京都大学2022年文系第4問〜線分の中点の軌跡
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ a,bを正の実数とする。直線L:ax+by=1と曲線y=-\frac{1}{x}との2つの交点\\
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を\\
Rとし、Lとy軸との交点をSとする。a,bが条件\\
\frac{PQ}{RS}=\sqrt2\\
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。
\end{eqnarray}
2022京都大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ a,bを正の実数とする。直線L:ax+by=1と曲線y=-\frac{1}{x}との2つの交点\\
のうち、y座標が正のものをP、負のものをQとする。また、Lとx軸との交点を\\
Rとし、Lとy軸との交点をSとする。a,bが条件\\
\frac{PQ}{RS}=\sqrt2\\
を満たしながら動くとき、線分PQの中点の軌跡を求めよ。
\end{eqnarray}
2022京都大学文系過去問
2022九州大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.
2022九州大過去問
この動画を見る
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.
2022九州大過去問
福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
2022京都大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
2022京都大学文系過去問
整式の剰余
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$(x+1)(x^2+1)(x^4+1)(x^8+1)$で割った余りを求めよ.
この動画を見る
$x^{2022}$を$(x+1)(x^2+1)(x^4+1)(x^8+1)$で割った余りを求めよ.
中学生もわかる!と思う!指数の方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2^{x+1}+2^{x-1} = 1280$
x=?
この動画を見る
$2^{x+1}+2^{x-1} = 1280$
x=?
2022早稲田大(社)整式の剰余
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$
2022早稲田大過去問
この動画を見る
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$
2022早稲田大過去問
【数Ⅱ】2つの円の位置関係・交点を通る直線または円の方程式【知らないと解けない知識問題】
単元:
#数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師:
めいちゃんねる
問題文全文(内容文):
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
この動画を見る
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{4}}}\ xy平面の第1象限内において、直線l:y=mx (m \gt 0)とx軸の両方に\\
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t \gt 0)を考える。\\
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。\\
ただし、b \gt aとする。\\
(1)mを用いてtを表せ。\\
(2)tを用いて\frac{b}{a}を表せ。\\
(3)極限値\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)を求めよ。
\end{eqnarray}
2022東北大学理系過去問
解けるように作られた問題
単元:
#数Ⅱ#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x^3-x-1=0 $の実数解を$ \alpha $とするとき,
$ \sqrt[3]{3\alpha^2-4\alpha}+\sqrt[3]{3\alpha^2+4\alpha+2}$の値を求めよ.
この動画を見る
$ x^3-x-1=0 $の実数解を$ \alpha $とするとき,
$ \sqrt[3]{3\alpha^2-4\alpha}+\sqrt[3]{3\alpha^2+4\alpha+2}$の値を求めよ.
解けるように作られた方程式
単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解$(x,y)$を求めよ.
$ 16^{x^2+y}+16^{x+y^2}=1$
この動画を見る
実数解$(x,y)$を求めよ.
$ 16^{x^2+y}+16^{x+y^2}=1$
指数方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$8^x=\frac{2^{56}-4^{26}}{30}$のときx=?
この動画を見る
$8^x=\frac{2^{56}-4^{26}}{30}$のときx=?
福田の数学・入試問題解説〜東北大学2022年理系第2問〜4次関数の極値と最小値
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
2022東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{2}}}\ aを実数とし、実数xの関数f(x)=(x^2+3x+a)(x+1)^2を考える。\\
(1)f(x)の最小値が負となるようなaのとりうる値の範囲を求めよ。\\
(2)a \lt 2のとき、f(x)は2つの極小値をもつ。このときf(x)が極小となる\\
xの値を\alpha_1,\alpha_2(\alpha_1 \lt \alpha_2)とする。f(\alpha_1) \lt f(\alpha_2)を示せ。\\
(3)f(x)がx \lt \betaにおいて単調減少し、かつ、x=\betaにおいて最小値をとるとする。\\
このとき、aのとりうる値の範囲を求めよ。
\end{eqnarray}
2022東北大学理系過去問
福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
2022東京大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}
2022東京大学文系過去問