数Ⅲ - 質問解決D.B.(データベース) - Page 11

数Ⅲ

#数検準1級1次_4#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{x(x^2+1)} dx$

出典:数検準1級1次
この動画を見る 

#藤田医科大学2023#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^5x$ $dx$

出典:2023年藤田医科大学
この動画を見る 

#数検準1級1次_2 #不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^x}{e^x+e^{-x}} dx$

出典:数検準1級1次
この動画を見る 

福田の数学〜千葉大学2024年理系第9問〜漸化式と極限

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を$0$以上の整数、$n$を$1$以上の整数、$t$を $0 < t < 1$ を満たす実数とし、$F(m, n)$を
$F(m, n)= \displaystyle \sum_{k=m}^{m+n-1} {{}_k \mathrm{ C }_m t^k}$
で定める。

(1) $p$を整数とする。
$
A = \dfrac{(t - 1) F(m + 1, n) + tF(m, n)}{t ^ p}
$
が$t$によらない値となる$p$と、そのときの$A$を求めよ。

(2)極限 $\displaystyle \lim_{ n \to \infty } F(m, n)$ が収束することを示し、その極限値を求めよ。ただし、$0 < s < 1$のとき
$ \displaystyle \lim_{ k \to \infty }k ^ m s ^ k$
であることは用いてよい。
この動画を見る 

#数検準1級1次 #7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (1+log x)^2$ $dx$

出典:数検準1級1次
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 

福田のおもしろ数学209〜無理不等式の解き方

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{x}+sqrt{x-2} < 3$を解いて下さい。
この動画を見る 

#数学検定準1級2次過去問#70「根性出すしかないんかなー」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x^4(1-x)^4}{1+x^2} dx$

出典:数検準1級2次
この動画を見る 

福田の数学〜千葉大学2024年理系第7問〜3次方程式の解の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を正の整数とする。 $x$ の関数 $f(x) $$= x^3$$-2nx^2$$+(2n-3)x$$+1$ について、以下の問いに答えよ。
$(1)$ $\alpha$ を $f(x)=0$ の$1$ つの解とする。 $\displaystyle f(\frac{1}{1-\alpha})$ の値を求めよ。
$(2)$ 方程式 $f(x) = 0$ は異なる $3$ つの実数解をもつことを示せ。
$(3)$ 方程式 $f(x) = 0$ の解で $2$ 番目に大きいものを $\beta_n$ とする。極限 $\displaystyle \lim_{ n \to \infty } \beta_n$ を求めよ。
この動画を見る 

#数検準1級1次#5#不定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }} dx$

出典:数検準1級
この動画を見る 

#東京理科大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
この動画を見る 

福田のおもしろ数学207〜不等式の証明と図形的な意味

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積・体積・長さ・速度#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \geqq b \gt 0,n$ は正の整数とする。
$a^n-b^n \leqq \frac{n}{2}(a-b)(a^{n-1}+b^{n-1})$ であることを証明せよ。
この動画を見る 

福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
この動画を見る 

#数検準1級-1#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e-1} \displaystyle \frac{x}{(x+1)^2} dx$

出典:数検準1級1次
この動画を見る 

#数学検定準1級2次過去問#69「展開が最短かも」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^4(1-x)^4$ $dx$

出典:数検準1級1次
この動画を見る 

福田の数学〜千葉大学2024年理系第5問〜確率と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。座標平面上の $2n$ 個の点からなる集合
$\{ (x,y) | x=1,2,3, \cdots , n , y=1,2 \}$
を考える。この集合から異なる $3$ 点を無作為に選び、その $3$ 点を線分で結んで得られる図形の面積を $X$ とする。ただし、 $3$ 点が同一直線上にあるときは $X=0$ とする。
$(1)$ $k$ が $0$ 以上の整数のとき、 $X$ が $\displaystyle \frac{k}{2}$ となる確率 $p_k$ を $n$ と $k$ の式で表せ。
$(2)$ $X$ が $\displaystyle \frac{n}{4}$ 以下となる確率を $q_n$ とおく。 $\displaystyle \lim_{n \to \infty} q_n$ を求めよ。
この動画を見る 

#数検準1級1次#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}dx$

出典:
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 

福田のおもしろ数学205〜不定積分の計算

アイキャッチ画像
単元: #積分とその応用#不定積分#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \int \dfrac{1}{1+\sin x + \cos x}dx$を求めよ。
この動画を見る 

#数検準1級1次過去問#定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$

出典:数検準1級1次
この動画を見る 

#福岡大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$

出典:福岡大学
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 

#小樽商科大学#不定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$

出典:小樽商科大学
この動画を見る 

福田の数学〜千葉大学2024年理系第4問(1)〜部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分$\displaystyle \int_0^{\frac{2\pi}{3}}x^2\sin xdx$を求めよ
この動画を見る 

福田のおもしろ数学202〜収束するための必要十分条件

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
整式$f(x)$がある。
$\displaystyle \lim_{x \rightarrow a}\dfrac{f(x)}{x-a}=b$であるための必要十分条件を求めよ。
この動画を見る 

福田のおもしろ数学201〜タンジェントの不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\tan x, \tan ^2x, \tan ^3x,\tan ^4x$の原始関数を求めよ。
この動画を見る 

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方とグラフの書き方【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求め,そのグラフをかけ。
$y=log_{\frac{1}{3}}x$
この動画を見る 

福田のおもしろ数学193〜マイナス無限大への極限はこわい

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{x \to - \infty} \frac{\sqrt{9x^6-x}}{x^3+6}$ を求めよ。
この動画を見る 

福田のおもしろ数学191〜指数関数と不定積分

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \int e^{\sqrt{x}} dx$を求めよ。
この動画を見る 

福田の数学〜立教大学2024年理学部第3問〜放物線のx軸周りとy軸周りの回転体の体積バームクーヘン積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}O$を原点とする座標平面上に放物線$C:y=x-x^2$がある。$C$上の点$P(\frac{1}{2},\frac{1}{4})$における$C$の接線を$l$、$Q(1,0)$における$C$の接線を$m$とする。$l$と$y$軸、$m$と$y$軸の交点をそれぞれR、Sとする。
(1)$l,m$の方程式をそれぞれ求めよ。
(2)$C$の$0\leqq x \leqq 1$の部分と、2つの線分QS,OSで囲まれた図形の面積Aを求めよ。
(3)$C$の$0 leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$x$軸のまわりに1回転させてできる立体の体積$V_1$を求めよ。
(4)$C$の$0 \leqq x \leqq \frac{1}{2}$の部分と、2つの線分PR,ORで囲まれた図形を、$y$軸のまわりに1回転させてできる立体$V_2$を求めよ。
(5)$C$の$0 \leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$y$軸のまわりに1回転させてできる立体の体積$V_3$を求めよ。
この動画を見る 
PAGE TOP