数Ⅲ
数Ⅲ
大学入試問題#85 小樽商科大学(1988) 不定積分

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \sin(log\ x)dx$を計算せよ。
出典:1988年小樽商科大学 入試問題
この動画を見る
$\displaystyle \int \sin(log\ x)dx$を計算せよ。
出典:1988年小樽商科大学 入試問題
大学入試問題#84 弘前大学(1986) 不定積分

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{e^x+1}\ dx$を計算せよ。
出典:1986年弘前大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{1}{e^x+1}\ dx$を計算せよ。
出典:1986年弘前大学 入試問題
大学入試問題#82 神戸大学(2012) 複雑な置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x-\cos\ x}{1+\cos\ x}\ dx$
出典:2012年神戸大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x-\cos\ x}{1+\cos\ x}\ dx$
出典:2012年神戸大学 入試問題
大学入試問題#80 信州大学(2001) 不定積分

単元:
#大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }+1}\ dx$を計算せよ。
出典:2001年信州大学 入試問題
この動画を見る
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ x+1 }+1}\ dx$を計算せよ。
出典:2001年信州大学 入試問題
【全ての問題は概要欄】大学入試問題#79 大阪大学(2020 改) 微分

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$0 \leqq x$
関数$f(x)=(x+1)^{\frac{1}{x+1}}$の最大値を求めよ。
出典:2020年大阪大学 入試問題
この動画を見る
$0 \leqq x$
関数$f(x)=(x+1)^{\frac{1}{x+1}}$の最大値を求めよ。
出典:2020年大阪大学 入試問題
大学入試問題#78 横浜国立大学(2006) 置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{dx}{\sin^2x+3\cos^2x}$を計算せよ。
出典:2006年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{dx}{\sin^2x+3\cos^2x}$を計算せよ。
出典:2006年横浜国立大学 入試問題
大学入試問題#77 京都大学(2002) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。
出典:2002年京都大学 入試問題
この動画を見る
$a_1=1,\displaystyle \lim_{ n \to \infty }S_n=1$
$n(n-2)a_{n+1}=s_n$のとき
一般項$a_n$を求めよ。
出典:2002年京都大学 入試問題
【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
この動画を見る
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。
出典:2007年京都大学 入試問題
大学入試問題#75 横浜国立大学(2006) 部分積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。
出典:2006年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。
出典:2006年横浜国立大学 入試問題
大学入試問題#74 神戸大学(1991) 数列と極限

単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
この動画を見る
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_n\ a_{n+1} }$のとき
$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
出典:1991年神戸大学 入試問題
大学入試問題#73 京都大学(2012) 極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(1+a^n)^{\frac{1}{n}}$の極限を求めよ。
出典:2012年京都大学 入試問題
この動画を見る
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(1+a^n)^{\frac{1}{n}}$の極限を求めよ。
出典:2012年京都大学 入試問題
こう見えても高校内容です。

大学入試問題#72 福岡教育大学(2009) 置換積分②

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ 7}(\displaystyle \frac{e^x}{1+e^x})^3dx$を計算せよ。
出典:2009年福岡教育大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{log\ 7}(\displaystyle \frac{e^x}{1+e^x})^3dx$を計算せよ。
出典:2009年福岡教育大学 入試問題
福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

単元:
#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
この動画を見る
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
大学入試問題#71 横浜国立大学(2005) 置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{log\ 3}{2}}\ \displaystyle \frac{e^x+1}{e^{2x}+1}\ dx$
出典:2005年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{log\ 3}{2}}\ \displaystyle \frac{e^x+1}{e^{2x}+1}\ dx$
出典:2005年横浜国立大学 入試問題
大学入試問題#70 鳥取大学医学部(2012) 微積の応用

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$a,b$:実数
$0 \lt a \lt 2$
$\displaystyle \int_{a}^{x}f(x-t)f(t)dt=\cos(ax)-b$
(1)$a,b$の値を求めよ。
(2)$f(x)$を求めよ
(3)$f(x)$が最大値をとるときの$x$の値を求めよ。
出典:2012年鳥取大学医学部 入試問題
この動画を見る
$a,b$:実数
$0 \lt a \lt 2$
$\displaystyle \int_{a}^{x}f(x-t)f(t)dt=\cos(ax)-b$
(1)$a,b$の値を求めよ。
(2)$f(x)$を求めよ
(3)$f(x)$が最大値をとるときの$x$の値を求めよ。
出典:2012年鳥取大学医学部 入試問題
福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(2) 水の問題(1)
$y=x^2$ をy軸の周りに回転させてできる容器に、
毎秒$1cm^3$の割合で水を入れる。水面の半径が
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。
この動画を見る
数学$\textrm{III}$ 変化率(2) 水の問題(1)
$y=x^2$ をy軸の周りに回転させてできる容器に、
毎秒$1cm^3$の割合で水を入れる。水面の半径が
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。
大学入試問題#68 京都大学(2012) 部分積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }}\displaystyle \frac{log\sqrt{ 1+x^2 }}{x^2}\ dx$
出典:2012年京都大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{\sqrt{ 3 }}\displaystyle \frac{log\sqrt{ 1+x^2 }}{x^2}\ dx$
出典:2012年京都大学 入試問題
大学入試問題#67 福岡教育大学(2009) 置換積分①

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log7}(\displaystyle \frac{e^x}{1+e^x})^2dx$を計算せよ。
出典:2009年福岡教育大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{log7}(\displaystyle \frac{e^x}{1+e^x})^2dx$を計算せよ。
出典:2009年福岡教育大学 入試問題
大学入試問題#66 横浜国立大学(2003) 置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x+1}{(x^2+x^1)^2}\ dx$を計算せよ。
出典:2003年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1}\displaystyle \frac{x+1}{(x^2+x^1)^2}\ dx$を計算せよ。
出典:2003年横浜国立大学 入試問題
福田のわかった数学〜高校3年生理系106〜変化率(1)

単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
この動画を見る
数学$\textrm{III}$ 変化率(1)
半径が毎秒1cmずつ増加する
球がある。半径が3cmとなる
瞬間の体積の増加する速さを求めよ。
大学入試問題#65 同志社大学(2010) 複雑な部分積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\sqrt{ 4x^2+1 }\ dx$を計算せよ。
出典:2010年同志社大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{1}\sqrt{ 4x^2+1 }\ dx$を計算せよ。
出典:2010年同志社大学 入試問題
原始ピタゴラス数を探せ

大学入試問題#64 早稲田大学(1987) 置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{dx}{(x^2+1)\sqrt{ x^2+1 }}$を計算せよ。
出典:1987年早稲田大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{2}\displaystyle \frac{dx}{(x^2+1)\sqrt{ x^2+1 }}$を計算せよ。
出典:1987年早稲田大学 入試問題
福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
この動画を見る
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
大学入試問題#63 京都大学(2011) 気合で置換積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}}(x+1)\sqrt{ 1-2x^2 }\ dx$を計算せよ。
出典:2011年京都大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{1}{2}}(x+1)\sqrt{ 1-2x^2 }\ dx$を計算せよ。
出典:2011年京都大学 入試問題
大学入試問題#62 横浜国立大学(2003) 定積分

単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}5^{log\ x}dx$を計算せよ。
出典:2003年横浜国立大学 入試問題
この動画を見る
$\displaystyle \int_{1}^{e}5^{log\ x}dx$を計算せよ。
出典:2003年横浜国立大学 入試問題
福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
この動画を見る
数学$\textrm{III}$ 絶対不等式(2)
$\sqrt x+\sqrt y \leqq k\sqrt{2x+y}$
が任意の正の実数x,yに対して成り立つような実数$k$
の値の範囲を求めよ。
福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(1)
$a^x \geqq x$
が任意の正の実数xに対して成り立つような
正の定数aの値の範囲を求めよ。
この動画を見る
数学$\textrm{III}$ 絶対不等式(1)
$a^x \geqq x$
が任意の正の実数xに対して成り立つような
正の定数aの値の範囲を求めよ。
【数Ⅲ】極限:極限の定形不定形をマスターしよう!

単元:
#関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
この動画を見る
極限の考え方の基本です。変形が必要な場合と必要でない場合の違いをチェックしましょう!
