数C

cos72°を求めよ(誘導あり)慶應(経済)Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$
慶應(経済)過去問
この動画を見る
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$
慶應(経済)過去問
東京工業大学 三次方程式 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
この動画を見る
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
福田の一夜漬け数学〜複素数平面(1)〜極形式と回転

単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(練習)以下の式を極形式表示に直せ。ただし$0 \leqq \theta\leqq 2\pi$とする。
(1)$2-2i$
(2)$(2-2\sqrt3i)(i-1)$
$\alpha=1+i,\beta=3+2i$のとき、この2点を一辺とする正三角形の
残りの頂点を表す複素数を求めよ。
この動画を見る
(練習)以下の式を極形式表示に直せ。ただし$0 \leqq \theta\leqq 2\pi$とする。
(1)$2-2i$
(2)$(2-2\sqrt3i)(i-1)$
$\alpha=1+i,\beta=3+2i$のとき、この2点を一辺とする正三角形の
残りの頂点を表す複素数を求めよ。
福田の一夜漬け数学〜平面ベクトル(1)〜受験編・文理共通

単元:
#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$k$を正の実数とする。点Pは$\triangle ABC$の内部にあり、
$k\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }\\$
を満たしている。また、辺$BC$を$3:5$に内分する点を$D$とする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB },\overrightarrow{ AC },k$を用いて表せ。
(2)3点$A,P,D$は一直線上にあることを示せ。
(3)$\triangle ABP$の面積が$\triangle CDP$の面積の$\frac{6}{5}$倍に等しいとき
$k$の値を求めよ。
【もとになる問題】
点$P$は$\triangle ABC$の内部にあり、
$6\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たしている。
(1)点$P$の位置を説明せよ。
(2)$\triangle PBC:\triangle PCA:\triangle PAB$を求めよ。
この動画を見る
$k$を正の実数とする。点Pは$\triangle ABC$の内部にあり、
$k\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }\\$
を満たしている。また、辺$BC$を$3:5$に内分する点を$D$とする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB },\overrightarrow{ AC },k$を用いて表せ。
(2)3点$A,P,D$は一直線上にあることを示せ。
(3)$\triangle ABP$の面積が$\triangle CDP$の面積の$\frac{6}{5}$倍に等しいとき
$k$の値を求めよ。
【もとになる問題】
点$P$は$\triangle ABC$の内部にあり、
$6\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たしている。
(1)点$P$の位置を説明せよ。
(2)$\triangle PBC:\triangle PCA:\triangle PAB$を求めよ。
ド・モアブルの定理を用いてオイラーの公式を導く

単元:
#複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
この動画を見る
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
ド・モアブルの定理を数学的帰納法で証明するよ。

なぜ、マイナス×マイナスはプラスなのか? 負✕負=正 虚数(複素数)を使って説明します

中学生の知識でオイラーの公式を理解しよう Vol 8 複素数 ドゥモアブルの定理

Euler's formula 中学生の知識でオイラーの公式を理解しよう 最終回

中学生の知識でオイラーの公式を理解しよう Vol 9

中学生の知識でオイラーの公式を理解しよう Vol 7 弧度法 sinの微分

単元:
#複素数平面#微分とその応用#複素数平面#色々な関数の導関数#数学(高校生)#数C#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法
この動画を見る
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法
【高校数学】 数B-2 ベクトルの加法

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右図で$\overrightarrow{ OA } + \overrightarrow{ AB }$=となる。
また、ベクトルの加法では次の法則が成り立つ。
$\vec{ a }+\vec{ b }=\vec{ b }+\vec{ a },(\vec{ a }+\vec{ b })+\vec{ c }=\vec{ a }+(\vec{ b }+\vec{ c })$
◎次のベクトル$\vec{ a }$、$\vec{ b }$について、$\vec{ a }+\vec{ b }$を図示しよう。
※図は動画内参照
この動画を見る
右図で$\overrightarrow{ OA } + \overrightarrow{ AB }$=となる。
また、ベクトルの加法では次の法則が成り立つ。
$\vec{ a }+\vec{ b }=\vec{ b }+\vec{ a },(\vec{ a }+\vec{ b })+\vec{ c }=\vec{ a }+(\vec{ b }+\vec{ c })$
◎次のベクトル$\vec{ a }$、$\vec{ b }$について、$\vec{ a }+\vec{ b }$を図示しよう。
※図は動画内参照
【高校数学】 数B-1 有向線分とベクトル

単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照
この動画を見る
右図のように①____を指定した線分を有向線分といい、Aを②____、Bを③____という。
そして、位置を気にしないで、④____と⑤____だけで定まる量をベクトルといい、有向線分ABで表されるベクトルを$\overrightarrow{ AB }$と書き表す。
また、ベクトル$\overrightarrow{ AB }$の大きさを⑥____と書き、特に大きさが1であるベクトルを⑦____ベクトルという。
※図は動画内参照