数学(高校生)
【高校数学】 数A-13 順列⑦ ・ グループ分け編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①10人をA,Bの2部屋に入れる方法は何通り?
ただし、全部の人を1つの部屋に入れてもいい。
②10人を2つの組A,Bに分ける方法は何通り?
③10人を2つの組に分ける方法は何通り?
この動画を見る
①10人をA,Bの2部屋に入れる方法は何通り?
ただし、全部の人を1つの部屋に入れてもいい。
②10人を2つの組A,Bに分ける方法は何通り?
③10人を2つの組に分ける方法は何通り?
【高校数学】 数A-12 順列⑥ ・ じゅず順列編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①8クラスの学級委員長が、円形の机に座るとき、直積の方法は何通り?
②先生1人、男子2人、女子3人が円形のテーブルに座るとき、男子2人が隣り合う座り方は何通り?
③色の異なる5個の玉を糸でつないで首飾りをつくる方法は何通り?
この動画を見る
①8クラスの学級委員長が、円形の机に座るとき、直積の方法は何通り?
②先生1人、男子2人、女子3人が円形のテーブルに座るとき、男子2人が隣り合う座り方は何通り?
③色の異なる5個の玉を糸でつないで首飾りをつくる方法は何通り?
【高校数学】 数A-11 順列⑤ ・ 数字の応用編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
5個の数字0、1、2、3、4から異なる3個の数字を使って3桁の整数をつくる。
①偶数は何個作れる?
②3の倍数は何個作れる?
③小さい方から順番に並べて、43番目の数はいくつ?
この動画を見る
5個の数字0、1、2、3、4から異なる3個の数字を使って3桁の整数をつくる。
①偶数は何個作れる?
②3の倍数は何個作れる?
③小さい方から順番に並べて、43番目の数はいくつ?
【高校数学】 数A-10 順列④ ・ 数字編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎5個の数字1,2,3,4,5から異なる3個の数字を使って3桁の整数をつくるとき、次のような整数は何個作れる?
①5の倍数
②奇数
③偶数
④200より大きい数
⑤230より大きい数
この動画を見る
◎5個の数字1,2,3,4,5から異なる3個の数字を使って3桁の整数をつくるとき、次のような整数は何個作れる?
①5の倍数
②奇数
③偶数
④200より大きい数
⑤230より大きい数
偏差値70の数学勉強法~数学は人生に関係ないの?【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
偏差値70の数学勉強法についての説明だけにとどまらず、「数学は人生に関係ないの?」かという疑問についてもお話をしています。
この動画を見る
偏差値70の数学勉強法についての説明だけにとどまらず、「数学は人生に関係ないの?」かという疑問についてもお話をしています。
【高校数学】 数A-9 順列③ ・ 男女編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎男子3人と女子5人が1列に並ぶとき、次のような並び方は何通りある?
①両端が女子
②両端の少なくとも1人は男子
③男子3人が続いて並ぶ
④どの男子も隣合わない
この動画を見る
◎男子3人と女子5人が1列に並ぶとき、次のような並び方は何通りある?
①両端が女子
②両端の少なくとも1人は男子
③男子3人が続いて並ぶ
④どの男子も隣合わない
【高校数学】 数A-8 順列② ・ 続・基本編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①5種類の数字1,2,3,4,5を並べて3桁の整数をつくるとなん通りできる?
②5種類の数字1,2,3,4,5を重複を許して並べて3桁の整数をつくるとなん通りできる?
③4人が1回じゃんけんするとき、手の出し方は何通りある?
この動画を見る
①5種類の数字1,2,3,4,5を並べて3桁の整数をつくるとなん通りできる?
②5種類の数字1,2,3,4,5を重複を許して並べて3桁の整数をつくるとなん通りできる?
③4人が1回じゃんけんするとき、手の出し方は何通りある?
【高校数学】 数A-7 順列① ・ 基本編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①${}_6 \mathrm{ P }_3=$
②${}_3 \mathrm{ P }_3=$
③${}_7 \mathrm{ P }_2=$
④${}_9 \mathrm{ P }_1=$
⑤$5! =$
⑥${}_6 \mathrm{ P }_0=$
⑦5個の文字a,b,c,d,eから異なる3個を選んで1列に並べるときの並べ方は何通り?
⑧30人の部員の中から、兼任を認めないで、部長・副部長を各1人選ぶとき、選び方は何通り?
⑨異なる7個の玉を机の上で円形に並べるとき、並べ方は何通り?
この動画を見る
①${}_6 \mathrm{ P }_3=$
②${}_3 \mathrm{ P }_3=$
③${}_7 \mathrm{ P }_2=$
④${}_9 \mathrm{ P }_1=$
⑤$5! =$
⑥${}_6 \mathrm{ P }_0=$
⑦5個の文字a,b,c,d,eから異なる3個を選んで1列に並べるときの並べ方は何通り?
⑧30人の部員の中から、兼任を認めないで、部長・副部長を各1人選ぶとき、選び方は何通り?
⑨異なる7個の玉を机の上で円形に並べるとき、並べ方は何通り?
【高校数学】 数A-6 場合の数③ ・ 自然数の組編
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x+2y+3z=11$を満たす自然数の組(x,y,z)は何組ある?
②$x+5y+3z=20$を満たす自然数の組(x.y,z)は何組ある?
この動画を見る
①$x+2y+3z=11$を満たす自然数の組(x,y,z)は何組ある?
②$x+5y+3z=20$を満たす自然数の組(x.y,z)は何組ある?
【高校数学】 数A-5 場合の数② ・ 正の約数編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①48の正の約数は何個?
②48の正の約数の総和はいくつ?
③600の正の約数は何個?
④600の正の約数の総和はいくつ?
この動画を見る
①48の正の約数は何個?
②48の正の約数の総和はいくつ?
③600の正の約数は何個?
④600の正の約数の総和はいくつ?
【高校数学】 数A-4 場合の数① ・ 基本編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①1,1,1,2,3の中から、3個の数字を使ってできる3桁の整数は何通り?
②大中小3個のさいころを投げる時、目の和が6になるのは何通り?
③(a+b)(c+d+e+f)を展開したとき、項は何個できる?
この動画を見る
①1,1,1,2,3の中から、3個の数字を使ってできる3桁の整数は何通り?
②大中小3個のさいころを投げる時、目の和が6になるのは何通り?
③(a+b)(c+d+e+f)を展開したとき、項は何個できる?
【高校数学】 数A-3 集合③
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①1から100までの自然数のうち、2,3,7の少なくとも1つで割り切れる数は何個ある?
この動画を見る
①1から100までの自然数のうち、2,3,7の少なくとも1つで割り切れる数は何個ある?
【高校数学】 数A-2 集合②
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎100から500までの自然数のうち、次のような数の個数を求めよう。
①6の倍数
②8の倍数
③6の倍数または8の倍数
④6の倍数であるが8の倍数でない数
⑤6でも8でも割り切れない数
この動画を見る
◎100から500までの自然数のうち、次のような数の個数を求めよう。
①6の倍数
②8の倍数
③6の倍数または8の倍数
④6の倍数であるが8の倍数でない数
⑤6でも8でも割り切れない数
【高校数学】 数A-1 集合①
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎9以下の自然数を全体集合とする。
$A={2,7,8},B={1,2,4,7,9}$について、次の集合を求めよう。
①$\overline{ A }$
②$\overline{ B }$
③$A \cup B$
④$\overline{ A } \cap \overline{ B }$
⑤$\overline{ A \cup B }$
この動画を見る
◎9以下の自然数を全体集合とする。
$A={2,7,8},B={1,2,4,7,9}$について、次の集合を求めよう。
①$\overline{ A }$
②$\overline{ B }$
③$A \cup B$
④$\overline{ A } \cap \overline{ B }$
⑤$\overline{ A \cup B }$
【高校数学】数Ⅰ-23 絶対値を含む方程式・不等式③(続 応用編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
この動画を見る
①$\sqrt{ x^2 }+\sqrt{ x^2-4x+4 }=4$
②$|x|-2|x+3|\geqq 0$
【高校数学】数Ⅰ-22 絶対値を含む方程式・不等式②(応用編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$|x-3|=4x$
②$|x-4| \leqq 3x$
③$|x+2|\gt 3x$
この動画を見る
①$|x-3|=4x$
②$|x-4| \leqq 3x$
③$|x+2|\gt 3x$
【高校数学】数Ⅰ-21 絶対値を含む方程式・不等式①(基本編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0$のとき、$|x|=a$の解は①____、$|x|\lt a$の解は②____、$|x| \gt a$の解は③____となる。
④$|x+2|=5$
⑤$|x+3|\lt 7$
⑥$|x+4|\gt 3$
⑦$|3x-1|\geqq 5$
⑧$|5x-3| \leqq 2$
⑨$|6-x| \gt 4$
この動画を見る
$a \gt 0$のとき、$|x|=a$の解は①____、$|x|\lt a$の解は②____、$|x| \gt a$の解は③____となる。
④$|x+2|=5$
⑤$|x+3|\lt 7$
⑥$|x+4|\gt 3$
⑦$|3x-1|\geqq 5$
⑧$|5x-3| \leqq 2$
⑨$|6-x| \gt 4$
【高校数学】数Ⅰ-19 1次不等式③(連立不等式編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
この動画を見る
①$\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 8 \geqq 4x+2 \\
3x + 4 \gt -2x
\end{array}
\right.
\end{eqnarray}$
②$\begin{eqnarray}
\left\{
\begin{array}{l}
5x \lt 2(x-6) \\
7 - 2x \geqq 3x-8x
\end{array}
\right.
\end{eqnarray}$
③$2x-1\lt5x+8\lt7x+4$
【高校数学】数Ⅰ-20 1次不等式④(応用編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
この動画を見る
①不等式$3x-a \lt 2(5-x)$を満たすxのうちで最大整数が5であるとき、定数aの値の範囲は?
②とある店では500円で会員になることができ、会員は10%引きで買い物ができる。
この店で定価600円の品物を買うとき、会員になった方が合計金額が安くなるのは何個以上買うとき?
【高校数学】数Ⅰ-18 1次不等式②(練習編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
この動画を見る
◎不等式を解こう。
①$\displaystyle \frac{1}{2}x \gt \displaystyle \frac{4}{5}x+3$
②$\displaystyle \frac{x}{3}-\displaystyle \frac{x-5}{2} \gt 0$
③$0.2x-1 \geqq 0.4x -1.5$
④$\displaystyle \frac{5}{6}x+\displaystyle \frac{1}{3} \leqq x+\displaystyle \frac{3}{4}$
【高校数学】数Ⅰ-17 1次不等式①(基本編)
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
この動画を見る
◎不等式を解こう。
①$4x-2\gt3x+5$
②$6x+3\lt4x-7$
③$7+2x\lt5x-2$
④$-3(2x+1)\leqq-x+2$
⑤$-5x+21+2(4x-3)\geqq0$
⑥$-3(3x+1)\lt7(x-2)$
【高校数学】数Ⅰ-16 √(ルート)シリーズ④(二重根号編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
この動画を見る
◎2重根号を外そう。
①$\sqrt{ 4+2\sqrt{ 3 } }$
②$\sqrt{ 5-2\sqrt{ 6 } }$
③$\sqrt{ 8-\sqrt{ 48 } }$
④$\sqrt{ 11+6\sqrt{ 2 } }$
⑤$\sqrt{ 4+\sqrt{ 15 } }$
⑥$\sqrt{ 6-3\sqrt{ 3 } }$
【高校数学】数Ⅰ-15 √(ルート)シリーズ③(応用編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
この動画を見る
◎$\displaystyle \frac{1}{2-\sqrt{ 3 }}$の整数部分を$a$、小数部分を$b$とする。
①$a,b$の値は?
②$a+4b+2b^2+2$の値は?
②次の各場合について、$\sqrt{ x^2+6+9 }$を$x$の整式で表そう。
③$x \geqq -3$
④$x \lt -3$
【高校数学】数Ⅰ-14 √(ルート)シリーズ②(因数分解とのコラボ編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
この動画を見る
◎$x=\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 2 }},y=\displaystyle \frac{1}{\sqrt{ 5 }-\sqrt{ 2 }}$のとき、次の式の値を求めよう。
①$x+y$
②$xy$
③$x^2+y^2$
◎$x=\displaystyle \frac{\sqrt{ 6 }+\sqrt{ 2 }}{ 2 }$のとき、次の値を求めよう。
④$x+\displaystyle \frac{1}{x}$
⑤$x^2+\displaystyle \frac{1}{x^2}$
⑥$x^3+\displaystyle \frac{1}{x^3}$
【高校数学】数Ⅰ-13 √(ルート)シリーズ①(有理化編)
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
この動画を見る
◎計算しよう。
①$\displaystyle \frac{2\sqrt{ 5 }-5\sqrt{ 2 }}{\sqrt{ 5 }-\sqrt{ 2 }}$
②$\displaystyle \frac{1}{1-\sqrt{ 2 }}-\displaystyle \frac{1}{\sqrt{ 2 }-\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }-2}$
③$\displaystyle \frac{1}{1+\sqrt{ 5 }+\sqrt{ 6 }}$
【高校数学】数Ⅰ-12 絶対値
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
この動画を見る
$ a \gt 0 $のとき$| a |$=①____、
$a=0$のとき$| a |$=②____
$a \lt 0$のとき$| a |$=③____となる。
◎次の値をもとめよう。
④$| 7 |$=
⑤$| -3 |$=
⑥$| -0.2 |$=
⑦$| -4 |-| 3 |$=
⑧$| \sqrt{ 5 }-3 |$=
◎aが次の値をとるとき、$| a+4 |+| a-3 |$の値は?
⑨$5$
⑩$\sqrt{ 6 }$
【高校数学】数Ⅰ-11 因数分解④(3次式の公式編)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$
この動画を見る
$a^3+b^3=$①____________、
$a^3-b^3=$②____________
◎因数分解しよう。
③$x^3+27$
④$8x^3-y^3$
⑤$x^3-3x^2+6x-8$
⑥$x^3-5x^2-4x+20$
【高校数学】数Ⅰ-10 因数分解③(応用編)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$xy-x+2y-2$
②$x^2-8y+2xy-16$
③$x^2-(2a-3)x+a^2-3a+2$
④$x^2+5xy+6y^2-2x-7y-3$
この動画を見る
◎因数分解しよう。
①$xy-x+2y-2$
②$x^2-8y+2xy-16$
③$x^2-(2a-3)x+a^2-3a+2$
④$x^2+5xy+6y^2-2x-7y-3$
【高校数学】数Ⅰ-9 因数分解②(たすき掛け編)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう
①$3x^2+5x+2$
②$6x^2+x-1$
③$5a^2+7a-6$
④$12x^2-23x+10$
⑤$6x^2-5xy-4y^2$
⑥$8x^2+14xy-15y^2$
この動画を見る
◎因数分解しよう
①$3x^2+5x+2$
②$6x^2+x-1$
③$5a^2+7a-6$
④$12x^2-23x+10$
⑤$6x^2-5xy-4y^2$
⑥$8x^2+14xy-15y^2$
【高校数学】数Ⅰ-8 因数分解①(基本編)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$
この動画を見る
◎因数分解しよう。
①$3ax^2-12a^2x$
②$x(x-5)+3(x-5)$
③$9x^2+12xy+4y^2$
④$50x^2-2y^2$
⑤$6a^3-54ab^2$
⑥$2x^2+14x+24$
⑦$x^2-(y-z)^2$
⑧$(x-y)^2+2(x-y)-24$