数学(高校生) - 質問解決D.B.(データベース) - Page 292

数学(高校生)

【高校数学】  数Ⅰ-53  特殊な最大・最小②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x.yを変数とするとき、$x^2-4xy+7y^2-4y+3$の最小値とそのときのx、yの値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-52  特殊な最大・最小①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x \geqq 0 , y \leqq 0,x-2y=3$のとき、$x^2+y^2$の最大値、最小値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-51  2次関数の決定③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす放物線の方程式を求めよう。

①放物線$y=2x^2-3x$を平行移動した曲線で、2点(1.-1)(2.0)を通る。
②放物線$y=x^2-3x+4$を平行移動した曲線で、点(2.4)を通り、頂点が 直線$y=2x+1$上にある。
この動画を見る 

【高校数学】  数Ⅰ-50  2次関数の決定②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次関数のグラフが次の3点を通るとき、その2次関数を求めよう。

①(-1.-2)(3.18)(-2.3)
②(3.0)(1.4)(-1.0)
この動画を見る 

【高校数学】  数Ⅰ-49  2次関数の決定①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たす2次関数を求めよう。

①頂点が(1.-2)で、点(2、-3)を通る。
②グラフの軸がx=-1で、2点(-2.9)(1.3)を通る。
③X=2で最小値-4をとり、X=4のときy=8である。
この動画を見る 

【高校数学】  数Ⅰ-48  2次関数の最大・最小⑦

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2x+y=1$のとき、$x^2+y^2$の最小値を求めよう。
②$x+2y=0$のとき、$xy$の最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-47  2次関数の最大・最小⑥ ・ 動く定義域編②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aは定数とする。関数$y=x^2-4x+5(a \leqq x \leqq a+1)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-46  2次関数の最大・最小⑤ ・ 動く定義域編①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0$とする。関数$y=x^2-2x-1(0 \leqq x \leqq a)$について。

①最小値を求めよう。
②最大値を求めよう。
この動画を見る 

【高校数学】  数Ⅰ-45  2次関数の最大・最小④ ・ 動く軸編

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
aは定数とする。関数$y=x^2-2ax+a(0 \leqq x \leqq 2)$の最大値、最小値を、次の各場合について求めよう。
①$a \leqq 0$
②$0 \lt a \lt 1$
③$a=1$
④$1 \lt a \lt 2$
⑤$a \geqq 2$
この動画を見る 

【高校数学】数Ⅰ-44 2次関数の最大・最小③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=3x^2+6x+C(-2 \leqq x \leqq 1)$の最大値が7となるような、定数Cの値を求めよう。
◎xの2次関数$y=x^2+2mx+3m$の最小値をkとする。
②kをmの式で表そう。
③kの値を最大にするmの値と、kの値を求めよう。
この動画を見る 

【高校数学】数Ⅰ-43 2次関数の最大・最小②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=2x^2-3(-2 \leqq x \leqq 3)$
②$y=-3x^2+6x+2(-1 \leqq x \leqq 3)$
③$y=x^2-4x+2(-2 \lt x \leqq 4)$
④$y=\displaystyle \frac{1}{3}x^2+2x+2(-2 \leqq x \lt 1)$
この動画を見る 

【高校数学】数Ⅰ-42 2次関数の最大・最小 ①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
この動画を見る 

【高校数学】数Ⅰ-41 2次関数⑦(移動編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=-2x^2-4x+1$をx軸方向に3、y軸方向に-1だけ平行移動して得られる放物線の方程式を求めよう。

②放物線$y=-2x^2-4x+3$の、x軸、y軸、原点それぞれに関する対称移動後の放物線の方程式を求めよう。
この動画を見る 

【高校数学】数Ⅰ-40 2次関数⑥

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次関数$y=ax^2+bx+c$のグラフが右の図のようになる時、次の値の符号を調べよう。
①$a$
②$b$
③$c$
④$b^2-ac$
⑤$a-b+c$
⑥$a+b+c$

※図は動画内参照
この動画を見る 

【高校数学】数Ⅰ-39 2次関数⑤(平方完成の練習編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を平方完成しよう。
①$y=x^2+2x-1$
②$y=2x^2-8x-6$
③$y=x^2-4x$
④$y=-2x^26x+3$
⑤$y=3x^2-5x+2$
⑥$y=\displaystyle \frac{1}{3}x^2+4x$
この動画を見る 

【高校数学】数Ⅰ-38 2次関数④(平方完成編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y=ax^2+bx+c$を平方完成すると①y=①____________となり、軸は②x=________、頂点は③(____,____)となる。

◎次の2次式を平方完成しよう。
④$y=x^2-4x+6$
⑤$y=2x^2+8x+3$
⑥$y=-3x^2-18x-17$
この動画を見る 

【高校数学】数Ⅰ-37 2次関数③(軸と頂点編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数の軸と頂点を求めよう。
①$y=3(x--1)^2-4$
②$y=2x^2+7$
この動画を見る 

【高校数学】数Ⅰ-36 2次関数②(値域編)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の値域を求めよう。また、最大値、最小値があれば、それをもとめよう。

①$y=2x+1(2 \leqq x \leqq 3)$
②$y=-3x+2(-1 \leqq x \leqq 2)$
③$y=x^2(-3 \leqq x \leqq 1)$
④$y=3x-5(1 \leqq x \lt 4)$
この動画を見る 

【高校数学】数Ⅰ-35 2次関数①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$f_{(x)}=-2x+3$について、次の値を求めよう。
①$f_{(4)}$
②$f_{(0)}$
③$f_{(1-a)}$

◎次の関数グラフが通る象限を書こう。
④$y=2x-5$
⑤$y=4$
この動画を見る 

【高校数学】数Ⅰ-34 命題⑧

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす有理数x,yの値を求めよう。
①$(3+2\sqrt{ 3 })x-(2-\sqrt{ 3 })y+1-4\sqrt{ 3 }=0$

②$\displaystyle \frac{7+x\sqrt{ 3 }}{2+\sqrt{ 3 }}=y+9\sqrt{ 3 }$
この動画を見る 

【高校数学】数Ⅰ-33 命題⑦(続 背理法編)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎命題「nは整数とする。$n^2$が3倍ならば、nは3倍数である」は真である。
これを利用して、$\sqrt{ 3 }$が無理であることを証明しよう。
この動画を見る 

【高校数学】数Ⅰ-32 命題⑥(背理法編)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\sqrt{ 2 }$が無理数であることを用いて、$5-\sqrt{ 2 }$が無理数であることを証明しよう。
この動画を見る 

【高校数学】数Ⅰ-31 命題⑤

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]

②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
この動画を見る 

【高校数学】数Ⅰ-30 命題④

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。

①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数

◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
この動画を見る 

【高校数学】数Ⅰ-29 命題③

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない

①$xy=0$は、$x^2+y^2>0$が成立するための▭
②$△ABC∞△PQR$は、$△ABC \equiv △PQR$であるための▭
③$|x|<1$かつ$|y|<1$は、$x^2+y^2<1$であるための▭
この動画を見る 

【高校数学】数Ⅰ-28 命題②

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない

①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
この動画を見る 

【高校数学】数Ⅰ-27 命題①

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
この動画を見る 

【高校数学】数Ⅰ-26 集合③

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は10以下の自然数}を全体集合とする。
$A \cap B={3}、\overline{ A } \cap \overline{ B }={1,2,5,8,}、\overline{ A } \cap B={4,7,10}$
のとき、次の集合を求めよう。

①$A$
②$B$
③$A \cap\overline{ B}$
この動画を見る 

【高校数学】数Ⅰ-25 集合②

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。

①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
この動画を見る 

【高校数学】数Ⅰ-24 集合①

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$U={1.2.3.4.5.6.7.8.9.10}$を全体集合とする。
$U$の部分集合$A={1.2.3.4.8},B={1.3.5.7.9}$について、次の集合を求めよう。

①$A \cap B$
②$A \cup B$
③$\overline{ A } \cap \overline{ B }$
④$ A \cup \overline{ B }$
⑤$\overline{ A } \cap B $
⑥$\overline{ A \cup B} $
この動画を見る 
PAGE TOP