数学(高校生)
数学(高校生)
【冷静に急いで…!】平方根:中央大学杉並高等学校~全国入試問題解法
単元:
#数学(中学生)#数と式#高校入試過去問(数学)#中央大学杉並高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240 + \sqrt{256}}}$を計算しなさい
この動画を見る
$\sqrt{\sqrt{90-\sqrt{81}}+\sqrt{240 + \sqrt{256}}}$を計算しなさい
#数検準1級1次#極限#ますただ

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 3 } \displaystyle \frac{x-3}{\sqrt{ 3x+7 }-4}$
出典:数検準1級1次
この動画を見る
$\displaystyle \lim_{ x \to 3 } \displaystyle \frac{x-3}{\sqrt{ 3x+7 }-4}$
出典:数検準1級1次
福田のおもしろ数学206〜x乗根の方程式の解

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt[ x ]{ 36 } + \sqrt[ x ]{ 24 } = \sqrt[ x ]{ 16 }$ を満たす $x$ を求めよ。
この動画を見る
$\sqrt[ x ]{ 36 } + \sqrt[ x ]{ 24 } = \sqrt[ x ]{ 16 }$ を満たす $x$ を求めよ。
#数学検定準1級2次過去問#69「展開が最短かも」 #定積分

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^4(1-x)^4$ $dx$
出典:数検準1級1次
この動画を見る
$\displaystyle \int_{0}^{1} x^4(1-x)^4$ $dx$
出典:数検準1級1次
mathematical formula : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#数学(高校生)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(x+y)^2 = \frac{51+10 \sqrt{2}}{5}$
$x-y= \frac{1-5\sqrt{2}}{\sqrt{5}}$のとき$4xyの値を求めなさい。$
この動画を見る
$(x+y)^2 = \frac{51+10 \sqrt{2}}{5}$
$x-y= \frac{1-5\sqrt{2}}{\sqrt{5}}$のとき$4xyの値を求めなさい。$
福田の数学〜千葉大学2024年理系第5問〜確率と極限

単元:
#大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。座標平面上の $2n$ 個の点からなる集合
$\{ (x,y) | x=1,2,3, \cdots , n , y=1,2 \}$
を考える。この集合から異なる $3$ 点を無作為に選び、その $3$ 点を線分で結んで得られる図形の面積を $X$ とする。ただし、 $3$ 点が同一直線上にあるときは $X=0$ とする。
$(1)$ $k$ が $0$ 以上の整数のとき、 $X$ が $\displaystyle \frac{k}{2}$ となる確率 $p_k$ を $n$ と $k$ の式で表せ。
$(2)$ $X$ が $\displaystyle \frac{n}{4}$ 以下となる確率を $q_n$ とおく。 $\displaystyle \lim_{n \to \infty} q_n$ を求めよ。
この動画を見る
$n$ を $3$ 以上の整数とする。座標平面上の $2n$ 個の点からなる集合
$\{ (x,y) | x=1,2,3, \cdots , n , y=1,2 \}$
を考える。この集合から異なる $3$ 点を無作為に選び、その $3$ 点を線分で結んで得られる図形の面積を $X$ とする。ただし、 $3$ 点が同一直線上にあるときは $X=0$ とする。
$(1)$ $k$ が $0$ 以上の整数のとき、 $X$ が $\displaystyle \frac{k}{2}$ となる確率 $p_k$ を $n$ と $k$ の式で表せ。
$(2)$ $X$ が $\displaystyle \frac{n}{4}$ 以下となる確率を $q_n$ とおく。 $\displaystyle \lim_{n \to \infty} q_n$ を求めよ。
#数検準1級1次#定積分#ますただ

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}dx$
出典:
この動画を見る
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}dx$
出典:
#山梨大学2013#定積分#ますただ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$
出典:2013年山梨大学
この動画を見る
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$
出典:2013年山梨大学
2の何とか乗

福田のおもしろ数学205〜不定積分の計算

単元:
#積分とその応用#不定積分#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle \int \dfrac{1}{1+\sin x + \cos x}dx$を求めよ。
この動画を見る
$\displaystyle \int \dfrac{1}{1+\sin x + \cos x}dx$を求めよ。
#数検準1級1次過去問#定積分

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$
出典:数検準1級1次
この動画を見る
$\displaystyle \int_{0}^{e^2-1} log(x+1)$ $dx$
出典:数検準1級1次
大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
この動画を見る
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。
出典:2014年奈良県立医科大学
x+y🟰❓

福田の数学〜千葉大学2024年理系第4問(3)〜コンビネーションに関する不等式の評価

単元:
#数A#大学入試過去問(数学)#場合の数#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の整数$n,p,q$が$p > q$かつ$_p\mathrm{C}_2+_q\mathrm{C}_2=n$を満たすとする。$_m\mathrm{C}_2 \leqq n$となる最大の整数$m$を求めよ。
この動画を見る
正の整数$n,p,q$が$p > q$かつ$_p\mathrm{C}_2+_q\mathrm{C}_2=n$を満たすとする。$_m\mathrm{C}_2 \leqq n$となる最大の整数$m$を求めよ。
#福岡大学#不定積分#ますただ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#福岡大学
指導講師:
ますただ
問題文全文(内容文):
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$
出典:福岡大学
この動画を見る
以下の不定積分を解け
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+1 }}$ $dx$
出典:福岡大学
ピカチュウ割と話せる説

#福島大学2013#定積分#ますただ

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} x$ $\sin2$ $x$ $dx$
出典:2013年福島大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} x$ $\sin2$ $x$ $dx$
出典:2013年福島大学
福田のおもしろ数学204〜値の計算

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt{70\cdot71\cdot72\cdot73+1}$を計算してください。
この動画を見る
$\sqrt{70\cdot71\cdot72\cdot73+1}$を計算してください。
#愛媛大学2014#極限#ますただ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$
出典:2024年愛媛大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(\sqrt{ x^2+x+4 }-\sqrt{ x^2+4 })\sin2x}{x^2}$
出典:2024年愛媛大学
大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$
出典:2022年東京理科大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$
出典:2022年東京理科大学
福田の数学〜千葉大学2024年理系第4問(2)〜複素数平面乗の正三角形の頂点を求める

単元:
#大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
複素数平面上の3点$\mathrm{P}(z), \mathrm{Q}(-1),\mathrm{R}(\sqrt3-1-i)$が正三角形をなすとき、複素数$z$を求めよ。
この動画を見る
複素数平面上の3点$\mathrm{P}(z), \mathrm{Q}(-1),\mathrm{R}(\sqrt3-1-i)$が正三角形をなすとき、複素数$z$を求めよ。
#小樽商科大学#不定積分#ますただ

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#小樽商科大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$
出典:小樽商科大学
この動画を見る
$\displaystyle \int \displaystyle \frac{x}{\sqrt{ 2x+2}-\sqrt{ 2 }}$ $dx$
出典:小樽商科大学
【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
これを解け.
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \displaystyle \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る
これを解け.
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \displaystyle \int_{-2}^{3}(x^2+4x+3)dx$
福田のおもしろ数学203〜整数を取る4変数の最大値

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a,b,c,d$はすべて正の整数とする。
$a+b+c+d=63$のとき$ab+bc+cd$の最大値を求めよ。
この動画を見る
$a,b,c,d$はすべて正の整数とする。
$a+b+c+d=63$のとき$ab+bc+cd$の最大値を求めよ。
#山梨大学2013#定積分#ますただ

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} log(x+11)$ $dx$
出典:2013年山梨大学
この動画を見る
$\displaystyle \int_{-10}^{0} log(x+11)$ $dx$
出典:2013年山梨大学
福田の数学〜千葉大学2024年理系第4問(1)〜部分積分

単元:
#大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
定積分$\displaystyle \int_0^{\frac{2\pi}{3}}x^2\sin xdx$を求めよ
この動画を見る
定積分$\displaystyle \int_0^{\frac{2\pi}{3}}x^2\sin xdx$を求めよ
福田のおもしろ数学202〜収束するための必要十分条件

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
整式$f(x)$がある。
$\displaystyle \lim_{x \rightarrow a}\dfrac{f(x)}{x-a}=b$であるための必要十分条件を求めよ。
この動画を見る
整式$f(x)$がある。
$\displaystyle \lim_{x \rightarrow a}\dfrac{f(x)}{x-a}=b$であるための必要十分条件を求めよ。
福田の数学〜千葉大学2024年文系第3問〜絶対値の付いた放物線と直線の位置関係

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a$を実数とする。$f(x)=x^2-ax+a^2-2$について、以下の問いに答えよ。
(1) $y=f(x)$のグラフと$x$軸が$x > 0$の範囲に共有点を2個もつような、$a$の値の範囲を求めよ。
(2) $k$を正の定数とし、$g(x)=kx$とする。$a$が(1)の範囲にあるとき、$y=|f(x)|$のグラフと$y=g(x)$のグラフの共有点がちょうど3個となるような$k$を求めよ。
この動画を見る
$a$を実数とする。$f(x)=x^2-ax+a^2-2$について、以下の問いに答えよ。
(1) $y=f(x)$のグラフと$x$軸が$x > 0$の範囲に共有点を2個もつような、$a$の値の範囲を求めよ。
(2) $k$を正の定数とし、$g(x)=kx$とする。$a$が(1)の範囲にあるとき、$y=|f(x)|$のグラフと$y=g(x)$のグラフの共有点がちょうど3個となるような$k$を求めよ。
福田のおもしろ数学201〜タンジェントの不定積分

単元:
#積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\tan x, \tan ^2x, \tan ^3x,\tan ^4x$の原始関数を求めよ。
この動画を見る
$\tan x, \tan ^2x, \tan ^3x,\tan ^4x$の原始関数を求めよ。
