空間図形
【中学数学】空間図形:図形の回転体はどういう形になる?
【高校受験対策/数学】死守52
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
この動画を見る
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
【高校受験対策】数学-図形26
単元:
#数学(中学生)#中1数学#空間図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。
①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。
②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
この動画を見る
高校受験対策・図形26
Q.
右の図は1辺の長さが8cmの正四面体$OABC$を表している。
①辺$OA,OB,OC$上にそれぞれ点$D,E,F$を、$OD:DA=1:2$、$OE:EB=1:2$、$OF:FC=1:2$
となるようにとる。
このとき正四面体$OABC$を3点$D,E,F$を通る平面で分けたときにできる2つの立体のうち
頂点$A$をふくむ立体の体積は正四面体$OABC$の体積の何倍か求めよ。
②$BC$の中点を$G$とし、辺$OA$上に、点$H$を$OH=GH$となるようにとる。
点$A$と点$G$を結び、点$H$から線分$AG$に垂線をひき、線分$AG$との 交点を$I$とする。
このとき線分$HI$の長さを求めよ。
球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します
単元:
#数学(中学生)#中1数学#数Ⅱ#空間図形#微分法と積分法#面積、体積#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
この動画を見る
球の表面積、体積の公式がなぜそうなるのかわかりやすく解説します!
【数学】中3-69 三平方・空間図形への利用③(円錐編)
単元:
#数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①右の円錐の体積は?
②直線ACを回転の軸として一回転させてできる立体の体積は?
◎右の展開図を組み立てたときにできる立体について求めよう!
③高さは?
④体積は?
※図は動画内参照
この動画を見る
①右の円錐の体積は?
②直線ACを回転の軸として一回転させてできる立体の体積は?
◎右の展開図を組み立てたときにできる立体について求めよう!
③高さは?
④体積は?
※図は動画内参照
【数学】中3-68 三平方・空間図形への利用②(角錐編)
単元:
#数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎右の正四角錐についてもとめよう!
①OHの長さは?
②体積は?
③表面積は?
※図は動画内参照
この動画を見る
◎右の正四角錐についてもとめよう!
①OHの長さは?
②体積は?
③表面積は?
※図は動画内参照
【数学】中3-67 三平方・空間図形への利用①(基本編)
単元:
#数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
直方体の対角線の長さをℓとすると
①$ℓ^2=$________が成り立つ。
◎右の直方体についてもとめよう!
②AGの長さは?
③EGの長さは?
④$\triangle AEG$の面積は?
※図は動画内参照
この動画を見る
直方体の対角線の長さをℓとすると
①$ℓ^2=$________が成り立つ。
◎右の直方体についてもとめよう!
②AGの長さは?
③EGの長さは?
④$\triangle AEG$の面積は?
※図は動画内参照