式の計算(展開、因数分解)
【中学数学】多項式:工夫して式を因数分解しよう!
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解しましょう。
(1)$(x+y)(x+y-1)-2$
(2)$(x^2+x)^2-8(x^2+x)+12$
(3)$a^3-a^2-2a+2$
この動画を見る
次の式を因数分解しましょう。
(1)$(x+y)(x+y-1)-2$
(2)$(x^2+x)^2-8(x^2+x)+12$
(3)$a^3-a^2-2a+2$
【高校受験対策/数学】死守57
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
【高校受験対策/数学】死守55
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
【高校受験対策/数学】死守53
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
【中学数学】多項式:工夫して式を展開しよう!
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を展開せよ。
1問目 $(x-2)(x+2)(x²+4)$
2問目 $(x-2)(x+1)(x-1)(x+2)$
3問目 $(x-2)(x+5)(x-3)(x+4)$
この動画を見る
次の式を展開せよ。
1問目 $(x-2)(x+2)(x²+4)$
2問目 $(x-2)(x+1)(x-1)(x+2)$
3問目 $(x-2)(x+5)(x-3)(x+4)$
【高校受験対策/数学】死守52
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
この動画を見る
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
中学生向け計算問題 因数分解 暇つぶし
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ
$(x+1)(x+2)(x+3)(x+4)-3$
この動画を見る
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ
$(x+1)(x+2)(x+3)(x+4)-3$
大阪教育大 複雑な3乗根の外し方
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
この動画を見る
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
【高校受験対策】数学-死守36
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36
①$5+4 \times 6$を計算せよ
②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ
③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ
④比例式$3:4=(x-6):8$について$x$の値を求めよ。
⑤$3x^2+9x-12$を因数分解せよ。
⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。
⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。
ア 口+△
イ 口-△
ウ 口×△
エ 口÷△
⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。
⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る
高校受験対策・死守36
①$5+4 \times 6$を計算せよ
②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ
③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ
④比例式$3:4=(x-6):8$について$x$の値を求めよ。
⑤$3x^2+9x-12$を因数分解せよ。
⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。
⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。
ア 口+△
イ 口-△
ウ 口×△
エ 口÷△
⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。
⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
【12/28】中3冬特訓4日目
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
この動画を見る
①$x^3+x^2-x-1$を因数分解しなさい。
➁関数$y=ax^2$は$x$の変域が$-4 \leqq x \leqq3$のとき、$y$の変域が$0 \leqq y \leqq8$である。
$x$の値が1から5まで増加するとき、この関数の変化の割合を求めよ。
③二次方程式$x^2-ax-5=0$の解の1つが$x=5$のとき、$a$の値ともう一つの解を求めよ。
④$\sqrt{6a}$を小数第一位で四捨五入すると2になるような整数$a$を求めよ。
【高校受験対策】数学-死守35
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#1次関数#平行と合同#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守35
①$6a \div -(\frac{3}{2})$
➁$9-(-15)\div3$
③$\sqrt{54}+4\sqrt{6}$
④$4x^2 \times -\frac{5}{6}xy$
⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$
⑥
$2x+5y=3$
$x-3y=7$
⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。
⑧2次方程式$x^2+3x-0$を解きなさい
⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。
⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。
⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。
⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。
⑬
袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。
⑭
底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
この動画を見る
高校受験対策・死守35
①$6a \div -(\frac{3}{2})$
➁$9-(-15)\div3$
③$\sqrt{54}+4\sqrt{6}$
④$4x^2 \times -\frac{5}{6}xy$
⑤$\sqrt{18}-\frac{4}{\sqrt{2}}$
⑥
$2x+5y=3$
$x-3y=7$
⑦$x=19$のとき、$x^2-10x+9$の値を求めなさい。
⑧2次方程式$x^2+3x-0$を解きなさい
⑨直線$y=-x+7$に平行で、点$(4,-1)$を通る直線の式を求めなさい。
⑩右の図のような五角柱ABCDEFGHIJにおいて、 辺AFとねじれの位置にある辺の数を求めなさい。
⑪半径が$6cm$、中心角が$40°$のおうぎ形の面積を求めなさい。 ただし円周率は$\pi$とする。
⑫$8\leqq \sqrt{n} \leqq9$にあてはまる自然数$n$は、全部で何個あるか求めなさい。
⑬
袋の中に赤玉が3個、白玉が2個入っています。
この袋の中から2個の玉を同時に取り出すとき、取り出した2個の玉が同じ色である確率を求めなさい。ただし、どの玉の取り出し方も同様に確からしいものとします。
⑭
底面の半径が$4cm$で、表面積が$84\pi cm^2$の円柱がある。
この円柱の体積を求めなさい。ただし円周率は$\pi$とする。
【高校受験対策】数学-死守34
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る
高校受験対策・死守34
①$(-8)+(-4)$
②$-\frac{5}{7}+\frac{2}{3}$
③$65a^2b \div5a$
④$\frac{18}{\sqrt{2}}-\sqrt{98}$
⑤$(x+9)^2-(x-3)(x-7)$
⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。
⑦2次方程式$6x^2-2x-1=0$を解きなさい。
⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。
④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。
⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。
⑪
Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。
⑫
右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)
単元:
#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
灘中 中学入試問題に挑戦
単元:
#算数(中学受験)#中3数学#式の計算(展開、因数分解)#灘中学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
この動画を見る
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
【受験対策】 数学-小問①
単元:
#数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$-5-8 \times \displaystyle \frac{1}{4}$
②$-3+5 \times (-1)^3$
③$4(2x-y)-3(x+y)$
④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$
⑤一次方程式$x-7=9(x+1)$を解こう。
⑥等式$2a-3b=1$を$b$について解こう。
⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
この動画を見る
◎次の計算をしよう。
①$-5-8 \times \displaystyle \frac{1}{4}$
②$-3+5 \times (-1)^3$
③$4(2x-y)-3(x+y)$
④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$
⑤一次方程式$x-7=9(x+1)$を解こう。
⑥等式$2a-3b=1$を$b$について解こう。
⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
【For you 動画-7】 中3-因数分解などなど
単元:
#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$x^2-6xy+9y^2-z^2$
②$x^4-10x^2+9$
③$\displaystyle \frac{x^2}{2}-\displaystyle \frac{y^2}{18}$
④$3x^2+2x-8$
⑤$3\sqrt{ 3 },5,4\sqrt{ 2 }$の大小関係を不等号を 使って表そう!!
◎$A=x^2-5xy,B=-6x^2+3y^2,C=2x^2-3xy+4y^2$のとき、次の計算をしよう!
⑥$3(A-2B)-2(A-3B)$
⑦$A-3(A-2B+C)+2(A-3B+4C)$
この動画を見る
計算せよ。
①$x^2-6xy+9y^2-z^2$
②$x^4-10x^2+9$
③$\displaystyle \frac{x^2}{2}-\displaystyle \frac{y^2}{18}$
④$3x^2+2x-8$
⑤$3\sqrt{ 3 },5,4\sqrt{ 2 }$の大小関係を不等号を 使って表そう!!
◎$A=x^2-5xy,B=-6x^2+3y^2,C=2x^2-3xy+4y^2$のとき、次の計算をしよう!
⑥$3(A-2B)-2(A-3B)$
⑦$A-3(A-2B+C)+2(A-3B+4C)$
【数学】中3-14 式の計算の利用④ 図の証明編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎縦の長さが$m$、横の長さが$n$の長方形の
まわりに幅のの道がある。道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう! !
長さはどう表せる?
①
②
③
④
【証明】
$S$=⑤______
=⑥______(整理)
$ℓ$=⑦______
=⑧______(整理)だから、
$a,ℓ$=⑨__________。
よって$S=a,ℓ$___
◎半径$r$の円形の池のまわりに、 幅$a$の道がある。
道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう!!
$ℓ$の円の直径は⑩____ で
一番外の円の半径は⑪____ だね。
【証明】
$S$=⑫______
=⑬______(展開)
=⑭______(整理)
$ℓ$=⑮______
=⑯______(整理)だから、
$a,ℓ$=⑰__________。
よって$S=a,ℓ$___
この動画を見る
◎縦の長さが$m$、横の長さが$n$の長方形の
まわりに幅のの道がある。道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう! !
長さはどう表せる?
①
②
③
④
【証明】
$S$=⑤______
=⑥______(整理)
$ℓ$=⑦______
=⑧______(整理)だから、
$a,ℓ$=⑨__________。
よって$S=a,ℓ$___
◎半径$r$の円形の池のまわりに、 幅$a$の道がある。
道の真ん中を通る線を$ℓ$とするとき、道の面積$S$が$a,ℓ$に等しいことを証明しよう!!
$ℓ$の円の直径は⑩____ で
一番外の円の半径は⑪____ だね。
【証明】
$S$=⑫______
=⑬______(展開)
=⑭______(整理)
$ℓ$=⑮______
=⑯______(整理)だから、
$a,ℓ$=⑰__________。
よって$S=a,ℓ$___
【数学】中3-12 式の計算の利用② 代入編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
式を①____してから代入しよう!!
②$x=12$のとき、$x^2-14x+49$は?
③$x=7,y=-\displaystyle \frac{1}{3}$のとき、$(4x-3y)^2-2x(8x-6y)$は?
④$x=3.6,y=0.3$のとき、$x^2-4y^2$は?
⑤$x=-\displaystyle \frac{1}{3},y=\displaystyle \frac{1}{2}$のとき、$(x+2y)^2-x(-2y+x)$は?
⑥$x-y=5,xy=-2$のとき、$x^2+y^2$は?
⑦$x+y=-3,xy=4$のとき、$x^2+xy+y^2$は?
この動画を見る
式を①____してから代入しよう!!
②$x=12$のとき、$x^2-14x+49$は?
③$x=7,y=-\displaystyle \frac{1}{3}$のとき、$(4x-3y)^2-2x(8x-6y)$は?
④$x=3.6,y=0.3$のとき、$x^2-4y^2$は?
⑤$x=-\displaystyle \frac{1}{3},y=\displaystyle \frac{1}{2}$のとき、$(x+2y)^2-x(-2y+x)$は?
⑥$x-y=5,xy=-2$のとき、$x^2+y^2$は?
⑦$x+y=-3,xy=4$のとき、$x^2+xy+y^2$は?
【数学】中3-13 式の計算の利用③ 数字の証明編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
連続する2つの偶数の平方の差は、
4の倍数になることを証明しよう!!
連続する2つの偶数を、整数$n$を使って
①____ ,②____とする。
③____ー④____
=⑤__________(途中式)
⑧____は整数なので、連続する2つの 偶数の平方の差は4の倍数になる。
◎3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の2乗になることを証明しよう!!
3つの連続した整数を、整数$n$を使って、
$n$,⑨____,⑩____とする。
⑪____+⑫___
=⑬_____=⑭_____
よって、3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の 2乗になる。
この動画を見る
連続する2つの偶数の平方の差は、
4の倍数になることを証明しよう!!
連続する2つの偶数を、整数$n$を使って
①____ ,②____とする。
③____ー④____
=⑤__________(途中式)
⑧____は整数なので、連続する2つの 偶数の平方の差は4の倍数になる。
◎3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の2乗になることを証明しよう!!
3つの連続した整数を、整数$n$を使って、
$n$,⑨____,⑩____とする。
⑪____+⑫___
=⑬_____=⑭_____
よって、3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の 2乗になる。
【数学】中3-10 因数分解⑤ 文章編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$x^2+ax-12$を因数分解すると、$(x-4)(x+b)$になった。
$a$と$b$は?
②$x^2+6x+a$を因数分解すると、$(x+8)(x+b)$になった。
$a$と$b$は?
③$x^2-8x+a$のを因数分解すると、$(x + b)^ 2$なった。
$a$と$b$は?
④$x^ 2+ax-12=(x + b)(x + c)$と因数分解できるような整数$a$を
すべて書こう!!
この動画を見る
計算せよ。
①$x^2+ax-12$を因数分解すると、$(x-4)(x+b)$になった。
$a$と$b$は?
②$x^2+6x+a$を因数分解すると、$(x+8)(x+b)$になった。
$a$と$b$は?
③$x^2-8x+a$のを因数分解すると、$(x + b)^ 2$なった。
$a$と$b$は?
④$x^ 2+ax-12=(x + b)(x + c)$と因数分解できるような整数$a$を
すべて書こう!!
【数学】中3-11 式の計算の利用① くふう編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
『こういう”くふう”をしたよ!』という
のがわかるように途中式を書こう!!
①$15.5^2-14.5$
②$52 \times 48$
③$201^2$
④$99^2$
⑤$1013 \times 1010-1010^2$
この動画を見る
『こういう”くふう”をしたよ!』という
のがわかるように途中式を書こう!!
①$15.5^2-14.5$
②$52 \times 48$
③$201^2$
④$99^2$
⑤$1013 \times 1010-1010^2$
【数学】中3-8 因数分解③ ちょい応用編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
もし①____ができるなら、
先に①をしてから因数分解をしよう!!
②$2x^2-72$
③$3x^2+9xy-30y$
④$-x^2-2x+35$
⑤$12x^2y-18xy^2$
⑥$9x^2-\displaystyle \frac{1}{16}$
⑦$25x^2-20xy+4y^2$
⑧$-16+y^2+6y$
⑨$-2x^2+10x-12$
⑩$\displaystyle \frac{1}{2}x^2-8$
この動画を見る
もし①____ができるなら、
先に①をしてから因数分解をしよう!!
②$2x^2-72$
③$3x^2+9xy-30y$
④$-x^2-2x+35$
⑤$12x^2y-18xy^2$
⑥$9x^2-\displaystyle \frac{1}{16}$
⑦$25x^2-20xy+4y^2$
⑧$-16+y^2+6y$
⑨$-2x^2+10x-12$
⑩$\displaystyle \frac{1}{2}x^2-8$
【数学】中3-9 因数分解④ もっと応用編
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$(x-5)(x-1)-12$
②$(x+6)^2-3(x+6)-10$
③$(a-b)^2-c^2$
④$4x(6-y)-y+6$
⑤$(2x+1)^2-3(x+1)(x-1)$
⑥$(a-1)^2+6(a-1)+9$
この動画を見る
計算せよ。
①$(x-5)(x-1)-12$
②$(x+6)^2-3(x+6)-10$
③$(a-b)^2-c^2$
④$4x(6-y)-y+6$
⑤$(2x+1)^2-3(x+1)(x-1)$
⑥$(a-1)^2+6(a-1)+9$
【数学】中3-7 因数分解②
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
この動画を見る
空欄を埋め、計算せよ。
$a^2+2ab+b^2=$①____
$a^2-2ab+b^2=$②____
$a^2-b^2=$③____
$x^2+(a+b)x+ab=$④____
⑤$x^2-81=$
⑥$x^2+6x+9=$
⑦$x^2-8x+16=$
⑧$x^2+5x+6=$
⑨$x^2-18x+81=$
⑩$x^2-x-12=$
⑪$x^2-25y^2=$
⑫$x^2+12xy+36y^2=$
⑬$x^2+10x+16=$
⑭$16x^2-9y^2=$
⑮$x^2-x-2=$
⑯$x^2+2x-15=$
【数学】中3-6 因数分解①
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
因数分解にも公式があるんだけど、
その前に覚えなきゃいけない技が①____!!
この技は、すべて項にはいっている②____や③____を
( )の前に出すことなんだ!!
◎技を練習しよう!!
④$ax-bx$
⑤$4x+6y$
⑥$2x^2-4x$
⑦$xy^2-2x^2y$
⑧$9ab^2+3ab$
⑨$4xy^2+6x^2y^2-2xy$
⑩$-5abc-10ab+15ac$
この動画を見る
空欄を埋め、計算せよ。
因数分解にも公式があるんだけど、
その前に覚えなきゃいけない技が①____!!
この技は、すべて項にはいっている②____や③____を
( )の前に出すことなんだ!!
◎技を練習しよう!!
④$ax-bx$
⑤$4x+6y$
⑥$2x^2-4x$
⑦$xy^2-2x^2y$
⑧$9ab^2+3ab$
⑨$4xy^2+6x^2y^2-2xy$
⑩$-5abc-10ab+15ac$
【数学】中3-5 素数と素因数分解
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!
◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$
⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?
この動画を見る
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!
◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$
⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?