平方根
平方根
【受験対策】数学-小問3(平方根特集)

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$\sqrt{ 6 } \div \sqrt{ 3 }+\sqrt{ 2 }$
②$\sqrt{ 32 }-2\sqrt{ 18 }+5\sqrt{ 2 }$
③$\sqrt{ 2 }-\sqrt{ 8 }+\displaystyle \frac{16}{\sqrt{ 2 }}$
④$\sqrt{ 54 }-\displaystyle \frac{42}{\sqrt{ 6 }}$
⑤$(2\sqrt{ 7 }-\sqrt{ 5 })(2\sqrt{ 7 }+\sqrt{ 5 })$
⑥$(2\sqrt{ 10 }-5)(2\sqrt{ 10 }+4)$
$\sqrt{ 2 } \lt x \lt \sqrt{ 19 }$を満たす整数$x$を。小さい順にすべて書こう。
$n$を50以下の整数とする。$\sqrt{ 3n }$が整数となるようなnの個数を求めよう。
$\sqrt{ 2a }$が1桁の自然数になるような自然数$a$の値をすべて求めよう。
この動画を見る
◎次の計算をしよう。
①$\sqrt{ 6 } \div \sqrt{ 3 }+\sqrt{ 2 }$
②$\sqrt{ 32 }-2\sqrt{ 18 }+5\sqrt{ 2 }$
③$\sqrt{ 2 }-\sqrt{ 8 }+\displaystyle \frac{16}{\sqrt{ 2 }}$
④$\sqrt{ 54 }-\displaystyle \frac{42}{\sqrt{ 6 }}$
⑤$(2\sqrt{ 7 }-\sqrt{ 5 })(2\sqrt{ 7 }+\sqrt{ 5 })$
⑥$(2\sqrt{ 10 }-5)(2\sqrt{ 10 }+4)$
$\sqrt{ 2 } \lt x \lt \sqrt{ 19 }$を満たす整数$x$を。小さい順にすべて書こう。
$n$を50以下の整数とする。$\sqrt{ 3n }$が整数となるようなnの個数を求めよう。
$\sqrt{ 2a }$が1桁の自然数になるような自然数$a$の値をすべて求めよう。
【数学】中3-23 ルートの問題をつめこんでみた

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?
$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?
$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?
$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!
◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?
⑥2番目に小さい$a$は?
この動画を見る
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?
$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?
$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?
$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!
◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?
⑥2番目に小さい$a$は?
【数学】中3-22 ルートと展開のコラボ

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$
⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
この動画を見る
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$
⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
【数学】中3-20 ルートのたし算・ひき算

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
√の中が①____同士しか計算できない。
だから最初に√の②____をしよう!!
③$2\sqrt{ 5 }+3\sqrt{ 5 }=$
④$3\sqrt{ 3 }-5\sqrt{ 3 }-2\sqrt{ 3 }=$
⑤$-2\sqrt{ 3 }+5\sqrt{ 2 }+4\sqrt{ 3 }=$
⑥$-4\sqrt{ 6 }+5-3+4\sqrt{ 3 }=$
⑦$\sqrt{ 20 }-\sqrt{ 5 }=$
⑧$2\sqrt{ 27 }+\sqrt{ 18 }-4\sqrt{ 12 }=$
⑨$-5+3\sqrt{ 5 }+\sqrt{ 20 }=$
⑩$\displaystyle \frac{\sqrt{ 2 }}{3}+\displaystyle \frac{\sqrt{ 2 }}{2}=$
この動画を見る
√の中が①____同士しか計算できない。
だから最初に√の②____をしよう!!
③$2\sqrt{ 5 }+3\sqrt{ 5 }=$
④$3\sqrt{ 3 }-5\sqrt{ 3 }-2\sqrt{ 3 }=$
⑤$-2\sqrt{ 3 }+5\sqrt{ 2 }+4\sqrt{ 3 }=$
⑥$-4\sqrt{ 6 }+5-3+4\sqrt{ 3 }=$
⑦$\sqrt{ 20 }-\sqrt{ 5 }=$
⑧$2\sqrt{ 27 }+\sqrt{ 18 }-4\sqrt{ 12 }=$
⑨$-5+3\sqrt{ 5 }+\sqrt{ 20 }=$
⑩$\displaystyle \frac{\sqrt{ 2 }}{3}+\displaystyle \frac{\sqrt{ 2 }}{2}=$
【数学】中3-19 有理化

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$が①____にいたら有理化しよう!!
②$\displaystyle \frac{\sqrt{ 5 }}{\sqrt{ 3 }}=$
③$\displaystyle \frac{3}{\sqrt{ 12 }}=$
④$\displaystyle \frac{6}{\sqrt{ 18 }}=$
◎計算しよう!
⑤$4\sqrt{ 3 } \div \sqrt{ 2 }=$
⑥$\sqrt{ 35 } \div (-\sqrt{ 2 }) \div \sqrt{ 15 }=$
$\sqrt{ 3 }=1.732,\sqrt{ 30 }=5.477$とすると、次の値はいくつ?
⑦$\sqrt{ 3000 }=$
⑧$\sqrt{ 30000 }=$
⑨$\sqrt{ 0.03 }=$
⑩$\sqrt{ \displaystyle \frac{3}{10} }$
この動画を見る
$\sqrt{ }$が①____にいたら有理化しよう!!
②$\displaystyle \frac{\sqrt{ 5 }}{\sqrt{ 3 }}=$
③$\displaystyle \frac{3}{\sqrt{ 12 }}=$
④$\displaystyle \frac{6}{\sqrt{ 18 }}=$
◎計算しよう!
⑤$4\sqrt{ 3 } \div \sqrt{ 2 }=$
⑥$\sqrt{ 35 } \div (-\sqrt{ 2 }) \div \sqrt{ 15 }=$
$\sqrt{ 3 }=1.732,\sqrt{ 30 }=5.477$とすると、次の値はいくつ?
⑦$\sqrt{ 3000 }=$
⑧$\sqrt{ 30000 }=$
⑨$\sqrt{ 0.03 }=$
⑩$\sqrt{ \displaystyle \frac{3}{10} }$
【数学】中3-17 ルートの変形

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!
◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$
$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!
◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
この動画を見る
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!
◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$
$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!
◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
【数学】中3-16 平方根②

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。
◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!
この動画を見る
整数を$\sqrt{ }$に変身させるなら
①____すればいい。
つまり・・・
5=②____,-7=③____
◎$\displaystyle \frac{5}{11},-\sqrt{ 3 },\sqrt{ 0.81 },\sqrt{ \displaystyle \frac{16}{25}},π$の中で・・・・
有理数は④____
無理数は⑤____
循環小数になるのは⑥____で、それを
循環小数で表すと⑦____となる。
◎小さいほうから順に並べよう!
⑧$-\sqrt{ 7 },3,\sqrt{ 6 },0,-2$
→⑧____→____→____→____→____
⑨$1.3,\sqrt{ 1.5 },1.4$
→⑨____→____→____
⑩$3 \lt \sqrt{ a } \lt 4.5$となる整数$a$は何個ある?
⑪$\sqrt{ a } \lt 2$となる自然数$a$をすべて書こう!
⑫$4 \lt \sqrt{ 2n } \lt 5$を満たす自然数$n$をすべて書こう!
【数学】中3-15 平方根①

単元:
#数学(中学生)#中3数学#平方根
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①____がすると$a$になる数を$a$の平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!
次の数の平方根をもとめよう!
⑥$5$→
⑦$9$→
⑧$\displaystyle \frac{25}{64}$→
⑨$0.36$→
次の値はいくつ?
⑩$(-\sqrt{ 6 })^2=$
⑪$-(\sqrt{ 11 })^2=$
⑫$-(\sqrt{ 49 })=$
⑬$\sqrt{ 100 }=$
⑭$\sqrt{ (-3) ^2 })=$
⑮$-\sqrt{ \displaystyle \frac{16}{81} }=$
この動画を見る
①____がすると$a$になる数を$a$の平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!
次の数の平方根をもとめよう!
⑥$5$→
⑦$9$→
⑧$\displaystyle \frac{25}{64}$→
⑨$0.36$→
次の値はいくつ?
⑩$(-\sqrt{ 6 })^2=$
⑪$-(\sqrt{ 11 })^2=$
⑫$-(\sqrt{ 49 })=$
⑬$\sqrt{ 100 }=$
⑭$\sqrt{ (-3) ^2 })=$
⑮$-\sqrt{ \displaystyle \frac{16}{81} }=$
