単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)2n個の玉があり、そのうちk個は赤、他は白とする。ただし$n>k>1$である。
また袋A, Bが用意されているとする。
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A
にi個 $(0 \leqq i \leqq k)$ の赤玉が入る確率を $p(n, k, i)$ とおく。kとiを固定して$n \to \infty$
とするときの p(n, k, i) の極限値をkとiの式で表すと $\lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ }$
となる。また$n>3$のとき $p(n, 3, 1) = \boxed{\ \ イ\ \ }$である。
以下、$n>k=3$として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す
とき、取り出した玉が赤玉である確率は$\boxed{\ \ ウ\ \ }$である。また、取り出した玉が赤玉
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は$\boxed{\ \ エ\ \ }$
である。
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ オ\ \ }$である。
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ カ\ \ }$である。
2022慶應義塾大学医学部過去問
この動画を見る