福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題006〜名古屋大学2015年理系数学第1問

問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=x^{-2}2^x(x≠0)$について、$f'(x) \gt 0$となるための
xに関する条件を求めよ。
(2)方程式$2^x=x^2$は相異なる3個の実数解をもつことを示せ。
(3)方程式$2^x=x^2$の解で有理数であるものを全て求めよ。

2015名古屋大学理系過去問
投稿日:2022.11.21

<関連動画>

福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$
連続と微分可能(1)
$f(x)$が$x=a$で微分可能 $\Rightarrow f(x)$は$x=a$で連続
を示せ。また、逆が成り立たないことを示せ。
この動画を見る 

微分方程式⑩-1【定数係数でない微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$t^2\dfrac{d^2x}{dt^2}+t\dfrac{dx}{dt}-x=0$

(2)$t^2\dfrac{d^2x}{dt^2}-3t\dfrac{dx}{dt}+3x=0$
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 関数 y=log(x-1) のグラフ上の点P(-2,0)における接線と法線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $y=\log(x-1)$ のグラフ上の点P($-2,0$)における接線と法線の方程式を求めよう。
この動画を見る 

大小比較!この形は超頻出なので絶対に抑えておきたい問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$e^\pi$と$\pi^e$の大小を比較せよ。
一橋大過去問
この動画を見る 

09愛知県教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $0 \leqq x \leqq \frac{1}{\sqrt 3}$
$f(x)=\int_x^{\sqrt 3 x} \sqrt{1-t^2} dt$
(1)f(x)の最大値
(2)$\displaystyle \lim_{ x \to \infty } \frac{f(x)}{x}$
この動画を見る 
PAGE TOP