福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減 - 質問解決D.B.(データベース)

福田の数学〜杏林大学2022年医学部第2問〜定積分と関数の増減

問題文全文(内容文):
(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。
$\int xe^{-3x}dx = -(\frac{\boxed{ア}\ x+\boxed{イ}}{\boxed{ウ}})\ e^{-3x}+C$
$\int x^2e^{-3x}dx = -(\frac{\boxed{エ}\ x^2+\boxed{オ}\ x+\boxed{カ}}{\boxed{キク}})\ e^{-3x}+C$
また、定積分について、
$\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{ケ}}(-1+\boxed{コ}\ e^{\boxed{サシ}}-\boxed{スセ}\ e^{-3})$
が成り立つ。

(2)p,q,rを実数の定数とする。関数$f(x)=(px^2+qx+r)e^{-3x}$が$x=0$で極大、
$x=1$で極小となるための必要十分条件は
$p=\boxed{ソタ}\ r,\ \ \ q=\boxed{チ}\ r,\ \ \ \boxed{ツ}$
である。さらに、$f(x)$の極小値が-1であるとすると、$f(x)$の極大値は$\frac{e^{\boxed{テ}}}{\boxed{ト }}$となる.
このとき、$\int_0^1f(x)dx=\frac{\boxed{ナ}}{\boxed{二}}$である。

$\boxed{ツ}$の解答群
$①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1$
$⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}$

2022杏林大学医学部過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(1)Cを積分定数として、指数関数とたんっ公式の席の不定積分について、次式が成り立つ。
$\int xe^{-3x}dx = -(\frac{\boxed{ア}\ x+\boxed{イ}}{\boxed{ウ}})\ e^{-3x}+C$
$\int x^2e^{-3x}dx = -(\frac{\boxed{エ}\ x^2+\boxed{オ}\ x+\boxed{カ}}{\boxed{キク}})\ e^{-3x}+C$
また、定積分について、
$\int_0^1|(9x^2-1)e^{-3x}|dx=\frac{1}{\boxed{ケ}}(-1+\boxed{コ}\ e^{\boxed{サシ}}-\boxed{スセ}\ e^{-3})$
が成り立つ。

(2)p,q,rを実数の定数とする。関数$f(x)=(px^2+qx+r)e^{-3x}$が$x=0$で極大、
$x=1$で極小となるための必要十分条件は
$p=\boxed{ソタ}\ r,\ \ \ q=\boxed{チ}\ r,\ \ \ \boxed{ツ}$
である。さらに、$f(x)$の極小値が-1であるとすると、$f(x)$の極大値は$\frac{e^{\boxed{テ}}}{\boxed{ト }}$となる.
このとき、$\int_0^1f(x)dx=\frac{\boxed{ナ}}{\boxed{二}}$である。

$\boxed{ツ}$の解答群
$①\ r\gt 0\ \ \ \ ②\ r=0\ \ \ \ ③\ r \lt 0\ \ \ \ ④\ r \gt 1\ \ \ \ ⑤\ r=1$
$⑥\ r \lt 1\ \ \ \ ⑦\ r \gt \frac{1}{3}\ \ \ \ ⑧\ r =\frac{1}{3}\ \ \ \ ⑨r \lt \frac{1}{3}$

2022杏林大学医学部過去問
投稿日:2022.11.01

<関連動画>

東工大 y=e^x に引ける接線の数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から引ける接線の本数を求めよ

出典:1980年東京工業大学 過去問
この動画を見る 

【数Ⅲ-174】曲線の長さ①(基本編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)

ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①

②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。

③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
この動画を見る 

東大数学!少しひらめきを求められる問題です(誘導あり)【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)実数$x$が$-1<x<1,x \neq 0$を満たすとき,次の不等式を示せ。

$(1-x)^{1-\dfrac{1}{x}}<(1+x)^{\dfrac{1}{x}}$

(2)次の不等式を示せ。

$0.9999^{101}<0.99<0.9999^{100}$

東大過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第5問〜関数の増減と最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 曲線C:y=(x+1)e^{-x} (x \gt -1)上の点Pにおける法線とx軸との交点をQとする。\\
点Pのx座標をtとし、点Qと点R(t,0)との距離をd(t)とする。\\
(1) d(t)をtを用いて表せ。\\
(2) x \geqq 0のとき e^x \geqq 1+x+\frac{x^2}{2}であることを示せ。\\
(3) 点Pが曲線C上を動くとき、d(t)の最大値を求めよ。
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP