福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
投稿日:2022.09.09

<関連動画>

福田の数学〜明治大学2021年全学部統一入試IⅡAB第3問〜平面幾何とベクトル

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#周角と円に内接する四角形・円と接線・接弦定理#平面上のベクトルと内積#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 辺の長さが2である正六角形ABCDEFがあり、点O,P,Qは次の条件を満たす。\\
・点Oは辺AB上にある。\\
・点Pは正六角形ABCDFの内部にある。\\
・点Qは線分CP上にある。\\
・三角形OCPと三角形OQFは共に正三角形である。\\
\\
(1)四角形OQPFに着目すると、\angle OFQ=\angle OPQより、\\
OQPFは円に内接する四角形なので、\angle OPF=\boxed{\ \ アイ\ \ }°とわかる。\\
\\
(2)AB //FCに着目すると、\triangle OCF=\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}である。OC//FP\\
であることに着目すると、\triangle OCP=\triangle OCFなので、OC^2=\boxed{\ \ オ\ \ }とわかる。\\
また、OB=\sqrt{\boxed{\ \ カ\ \ }}-\boxed{\ \ キ\ \ }\ である。\\
\\
(3)OQ^2=OF^2=\boxed{\ \ クケ\ \ }-\boxed{\ \ コ\ \ }\sqrt{\boxed{\ \ サ\ \ }}であり、\overrightarrow{ OQ }=t\ \overrightarrow{ OP }+(1-t)\ \overrightarrow{ OC }\\
とおくと、tはt^2-t+\sqrt{\boxed{\ \ シ\ \ }}-\boxed{\ \ ス\ \ }=0を満たす。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

福田の数学〜大阪大学2022年文系第1問〜交点の位置ベクトルと線分の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 三角形ABCにおいて、辺ABを2:1に内分する点をM、辺ACを1:2に内分する点をNとする。\\
また、線分BNと線分CMの交点をPとする。\\
(1)\overrightarrow{ AP }を、\overrightarrow{ AB }と\overrightarrow{ AC }を用いて表せ。\\
(2)辺BC,CA,CBの長さをそれぞれa,b,cとするとき、線分APの長さを、a,b,cを用いて表せ。
\end{eqnarray}

2022大阪大学文系過去問
この動画を見る 

【数C】平面ベクトル:位置ベクトル (1)AGをbとdを用いて表せ。(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて、2辺AB,ADの中点をそれぞれE,Fとし、線分BFと線分CEの交点をGとする。AB=B,AD=dとするとき、次の問に答えよ。
(1)AGをbとdを用いて表せ。
(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} AB=2,BC=3の長方形ABCDの形の紙がある。DE=aとなる辺DC上の\\
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,\\
辺BCとの交点をそれぞれP,Qとする。\\
\\
(1)aを用いて表すと、AP=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}a^2+\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}である。\\
\\
(2)aを用いて表すと、BQ=\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}a^2+\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}a+\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}である。\\
\\
(3)aを用いて表すと、PQ=\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\sqrt{a^2+\boxed{\ \ メ\ \ }} である。\\
\\
(4)四角形ABQPの面積はaを用いて表すと、\frac{\boxed{\ \ モ\ \ }}{\boxed{\ \ ヤ\ \ }}a^2+\frac{\boxed{\ \ ユ\ \ }}{\boxed{\ \ ヨ\ \ }}a+\boxed{\ \ ラ\ \ }\\
であり、その最小値は\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}である。
\end{eqnarray}

2019上智大過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
この動画を見る 
PAGE TOP