福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限 - 質問解決D.B.(データベース)

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
投稿日:2023.12.24

<関連動画>

福田の数学〜神戸大学2023年文系第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ A, Bの2人が、はじめに、Aは2枚の硬貨を、Bは1枚の硬貨を持っている。
2人は次の操作(P)を繰り返すゲームを行う。
(P)2人は持っている硬貨すべてを同時に投げる。それぞれが投げた硬貨のうち表がでた硬貨の枚数を数え、その枚数が少ない方が相手に1枚の硬貨を渡す。
操作(P)を繰り返し、2人のどちらかが持っている硬貨の枚数が3枚となった時点でこのゲームは終了する。操作(P)をn回繰り返し行ったとき、Aが持っている硬貨の枚数が3枚となってゲームが終了する確率を$p_n$とする。ただし、どの硬貨も1回投げたとき、表の出る確率は$\frac{1}{2}$とする。以下の問いに答えよ。
(1)$p_1$の値を求めよ。
(2)$p_2$の値を求めよ。
(3)$p_3$の値を求めよ。

2023神戸大学文系過去問
この動画を見る 

【高校数学】  数A-3  集合③

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1から100までの自然数のうち、2,3,7の少なくとも1つで割り切れる数は何個ある?
この動画を見る 

京都府採用試験数学【2016】

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。

2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。

3. 複素数$(\frac{-1+\sqrt{3}i}{2})^{2015} + (\frac{-1-\sqrt{3}i}{2})^{2015}$

4. $log_{2}3$は無理数を示せ

5. $△OAB = \frac{|a_1b_2-a_2b_1|}{2}$を示せ
*図は動画内参照

6. f(x)=e^x sinx
(1) $0 \leqq x \leqq \pi$ y=f(x)の極大値を求めよ。

(2)x軸とy=f(x) ($0 \leqq x \leqq \pi$)で囲まれた面積を求めよ。

7. $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2015}{2015}$のうち既約分数の個数を求めよ。

8. $n \in \mathbb{ N }$
$2(\sqrt{n+1} - 1) < 1 + \frac{1}{\sqrt 2} + \frac{1}{\sqrt 3} + \cdots + \frac{1}{\sqrt n}$
この動画を見る 

WASEDAを並べよ 早稲田高校

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
WASEDAの6文字を一列に並べるとき、全ての母音が隣り合っている並べ方は何通り?
早稲田高等学校
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。

$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}$

2021上智大学理系過去問
この動画を見る 
PAGE TOP