福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点 - 質問解決D.B.(データベース)

福田の数学〜格子点の個数を数えるコツ〜北里大学2023年医学部第1問(1)〜複素数平面上の円の内部にある格子点

問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
( 1 ) 8 の 6 乗根のうち、実部が正で虚部が負である複素数をzとする。このとき、$\fbox{ア}$であり、$z+z^5=\fbox{イ}$。複素数平面において、点zを中心とする円Cが実軸と2点a,bで交わり、$|a-b|=\sqrt{30}$を満たしている。このとき、円Cの半径 r は$r=\fbox{ウ}$である。また、円Cの内部にある複素数のうち、実部、虚部ともに 0 以上の整数であるものの個数は$\fbox{エ}$である。

2023北里大学医過去問
投稿日:2023.12.16

<関連動画>

山梨大 2次方程式と複素数平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ

出典:2000年山梨大学 過去問
この動画を見る 

福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形

アイキャッチ画像
単元: #数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 複素数zと正の実数rは、等式\\
z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)\\
を満たしている。ただし、iは虚数単位である。\\
(\textrm{i})zの偏角\thetaを0 \leqq \theta \lt 2\pi の範囲にとるとき、\thetaのとりうる値の\\
うち最小のものは\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi\ であり、最大のものは\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi\ である。\\
(\textrm{ii})等式(*)と等式\\
\\
|z-i|=1\\
\\
が共に成り立つとき、rの値はr=\boxed{\ \ ナ\ \ }\ またはr=\boxed{\ \ ニ\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

10次方程式の解

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x^{11}-1}{x-1}=0$の解の1つをαとする.
$(1-α)(1-α^2)(1-α^3)\cdots(1-α^{10})$の値を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第4問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 複素数平面上の点zがz+\bar{ z }=2を満たしながら動くとき、以下の問いに答えよ。\\
(1)点z全体が描く図形を複素数平面上に図示せよ。\\
\\
(2)w=(2+i)z で定まる点w全体が描く図形を調べよう。\\
(\textrm{a})wの実部をu、虚部をvとしてw=u+viと表すとき、u,vが満たす方程式\\
を求めよ。\\
(\textrm{b})点w全体が描く図形を複素数平面上に図示せよ。\\
\\
(3)w=z^2で定まる点w全体が描く図形を複素数平面上に図示せよ。
\end{eqnarray}

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP