福田の数学〜東北大学2022年文系第3問〜領域における最大 - 質問解決D.B.(データベース)

福田の数学〜東北大学2022年文系第3問〜領域における最大

問題文全文(内容文):
a,bを正の実数とし、xy平面上の直線$l:ax;by-2=0$を考える。
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、
$3a+2b$を最大にするa,bの値と$3a+2b$の最大値を求めよ。

2022東北大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを正の実数とし、xy平面上の直線$l:ax;by-2=0$を考える。
(1)直線lと原点の距離が2以上であり、直線lと直線x=1の交点のy座標が
2以上であるような点(a,b)の取りうる範囲Dを求め、ab平面上に図示せよ。
(2)点(a,b)が(1)で求めた領域Dを動くとする。このとき、
$3a+2b$を最大にするa,bの値と$3a+2b$の最大値を求めよ。

2022東北大学文系過去問
投稿日:2022.04.07

<関連動画>

福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

cosの積 華麗な解法で綺麗な答え

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \prod_{k=1}^7 \cos\dfrac{\pi}{15}\pi=$
$\cos\dfrac{\pi}{15}\cos\dfrac{2\pi}{15}\cos\dfrac{3\pi}{15}\cos\dfrac{4\pi}{15}\cos\dfrac{5\pi}{15}\cos\dfrac{6\pi}{15}\cos\dfrac{7\pi}{15}$
この動画を見る 

福田のわかった数学〜高校2年生013〜直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
3直線$\left\{
\begin{array}{1}
a_1x+b_1y=1\\
a_2x+b_2y=1\\
a_3x+b_3y=1
\end{array}
\right.$
 が1点で交わるとき、
3点$(a_1,b_1),(a_2,b_2),(a_3,b_3)$は一直線上にあることを示せ。
この動画を見る 

15和歌山県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$0\leqq x\leqq \dfrac{\pi}{2}$とする.
$y=\dfrac{1}{2-\sin^2x}\dfrac{1}{2-\cos^2x}$の
最大値,最小値を求めよ.

この動画を見る 

名古屋市立(医) 関数 微分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$

(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ

(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$

出典:1995年名古屋市立大学 医学部 過去問
この動画を見る 
PAGE TOP