福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
投稿日:2022.03.27

<関連動画>

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

アイキャッチ画像
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
この動画を見る 

二次方程式の解が2つの整数 戸山

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの2次方程式$x^2+ax-8=0$の2つの解がともに整数であるとき、aの値をすべて求めよ。
戸山高等学校
この動画を見る 

【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$m$は定数とする。放物線$y=x^2+(m+3)x+3m+4$と$x$軸の共有点の個数を調べよ。

次の2次不等式の解がすべての実数であるとき、定数$m$の値の範囲を求めよ。
(1)$x^2-mx+1>0$(2)$x^2+mx+2m\leqq0$

次の連立不等式を満たす整数$x$の値を全て求めよ。
\begin{eqnarray}
(1)\left\{
\begin{array}{l}
2x^2-x-3<0\\
3x^2-10x+3<0
\end{array}
\right.
(2)\left\{
\begin{array}{l}
x^2+2x>1\\
x^2-x\leqq6
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【高校数学】  数Ⅰ-69  2次不等式⑧

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2つの2次方程式$x^2-x+a=0,x^2+2ax-3a+4=0$について、次の条件を満たす定数aの値の範囲を求めよう。

①両方とも実数解をもつ
②少なくとも一方が実数解をもつ
③一方だけが実数解をもつ
この動画を見る 

高知大(医他) 二次方程式整数解 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
a自然数、p、q素数
$ax^2-px+q=0$の2解が整数となる(a,p,q)の組をすべて求めよ
この動画を見る 
PAGE TOP