福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}

2022東北大学理系過去問
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 正の整数nに対して、\\
S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)\\
とする。\\
(1)正の実数xに対して、次の不等式が成り立つことを示せ。\\
\\
\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}\\
\\
(2)極限値\lim_{n \to \infty}S_nを求めよ。
\end{eqnarray}

2022東北大学理系過去問
投稿日:2022.03.19

<関連動画>

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(2)\\
関数f(x),g(x)は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、\\
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式f(x)=g(x)はa \leqq x \leqq b\\
に実数解をもつことを示せ。
\end{eqnarray}
この動画を見る 

福田の数学〜大阪大学2022年理系第4問〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\log(x+1)+1$とする。以下の問いに答えよ。
(1)方程式$f(x)=x$は、$x \gt 0$の範囲でただ1つの解を
もつことを示せ。
(2)(1)の解を$\alpha$とする。実数$x$が$0 \lt x \lt \alpha$を満たすならば、
次の不等式が成り立つことを示せ。
$0 \lt \frac{\alpha-f(x)}{\alpha-x} \lt f'(x)$
(3)数列$\left\{x_n\right\}$を
$x_1=1, x_{n+1}=f(x_n) (n=1,2,3,\ldots\ldots)$
で定める。このとき、全ての自然数nに対して
$\alpha -x_{n+1} \lt \frac{1}{2}(\alpha -x_n)$
が成り立つことを示せ。
(4)(3)の数列$\left\{x_n\right\}$について、$\lim_{n \to \infty}x_n=\alpha$を示せ。

2022大阪大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系031〜極限(31)関数の極限、色々な極限(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(1)\\
\lim_{x \to 1}\frac{(x-1)^2}{|x^2-1|} を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】極限:ロピタルを使って極限を簡単に求める

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\dfrac{1-\cos 3x}{x^2}$を求めよ
この動画を見る 

数学「大学入試良問集」【17−4 漸化式と等比数列・極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京農工大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次のように定義された数列を$\{a_n\}$とする。
$a_1=r^2,a_2=1,2a_n=(r+3)a_{n-1}-(r+1)a_{n-2}(n \geqq 3)$
このとき、次の各問いに答えよ。
(1)$b_n=a_{n+1}-a_n$とおくとき、$b_n$を$n$と$r$を用いて表せ。
(2)$a_n$を求めよ。
(3)数列$\{a_n\}$が収束するような$r$の範囲およびそのときの極限値を求めよ。
この動画を見る 
PAGE TOP