【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】

問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。

(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。

京都大過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。

(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。

京都大過去問
投稿日:2023.04.10

<関連動画>

【数Ⅱ】【指数関数と対数関数】対数のグラフ、方程式 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1)$y=\log_{2}{(x-2)}$
(2)$y=\log_{\frac{1}{3}}{x+1}$
(3)$y=\log_{10}{(-x)}$

次の数の大小を不等号を用いて表せ。
(1) $\log_{0.5}{4}, \log_{2}{4}, \log_{3}{4}$
(2) $\log_{3}{0.5}, \log_{2}{0.5}, \log_{3}{0.5}$
(3) $\log_{4}{9}, \log_{5}{25}, 1.5$

次の方程式を解け
(1) $\log_{10}{(x+2)(x+5)}=1$
(2) $\log_{\frac{1}{3}}{(9 + x - x^2)} = -1$

(1) $\log_{2}{x} + \log_{2}{(x+3)} = 2$
(2) $\log_{4}{(2x+3)} + \log_{4}{(4x+1)} = 2 \log_{4}{5}$
(3) $\log_{2}{(3-x)} = \log_{2}{(2x+18)}$
この動画を見る 

福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(2)
$x\log x \geqq (x-1)\log(x+1) (x \geqq 1)$を証明せよ。
この動画を見る 

順天堂(医)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$w=z+z^2+z^4$

(1)
 ①$w+\bar{ w }$
 ②$w・\bar{ w }$

(2)
 ①$\cos \displaystyle \frac{2}{7}\pi+\cos \displaystyle \frac{4}{7}\pi+\cos \displaystyle \frac{8}{7}\pi$
 ②$\sin \displaystyle \frac{2}{7}\pi+\sin \displaystyle \frac{4}{7}\pi+\sin \displaystyle \frac{8}{7}\pi$


出典:2019年順天堂大学医学部 過去問
この動画を見る 

【高校数学】線形計画法(円と直線パターン)の考え方【数学のコツ】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2≦1, y≧0$のとき、$-2x+y$の最大値、最小値を求めよ。
この動画を見る 

指数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数である.
$2^x+2^y=10,4^{x+y}=5,2^{x-y}+2^{y-x}=?$
これを解け.
この動画を見る 
PAGE TOP