福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
投稿日:2021.10.19

<関連動画>

13和歌山県教員採用試験(数学:3番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$0\leqq x\lt 2\pi$である.
$f(x)=\sin x+\cos x+\sqrt 2 \sin x \cos x$の
最大値,最小値とそのときの$x$の値を求めよ.
この動画を見る 

【高校数学】三角関数4.5~例題で学ぶグラフのかき方~ 4-6【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次のグラフをかけ。(丸付けは動画を参照してください)
(1) y=$\displaystyle \frac{1}{2}$cosθ

(2) y=cos(θ-$\displaystyle \frac{π}{6}$)

(3) y=cos4θ

(4) y=sin$\displaystyle \frac{θ}{2}$

(5) y=tan$\displaystyle \frac{θ}{4}$
この動画を見る 

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 

大学入試問題#137 秋田大学(2020) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: ますただ
問題文全文(内容文):
$y=\displaystyle \frac{6+4\sin\theta+4\cos\theta+\sin2\theta}{2+\sin\theta+\cos\theta}$の最小値を求めよ。

出典:2020年秋田大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP