問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
サイコロを3回投げて出た目を順に$a,b,c$とするとき,
$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $
となる確率を求めよ。
一橋大過去問
投稿日:2022.09.18