【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
投稿日:2023.12.14

<関連動画>

福田の数学〜立教大学2021年理学部第1問(5)〜対数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)\ A=4^{(4^4)},\ B=(4^4)^4 のとき、\log_2(\log_2A)-\log_2(\log_2B)の値を\\
整数で表すと\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

聖マリアンナ医大 4次関数と3次関数の共有点の数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#対数関数#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+x^2-5x+3$
$g(x)=x^4+x^2-(k+1)x+k$
$f(x)$と$g(x)$の共有点の個数

出典:2010年聖マリアンナ医科大学 過去問
この動画を見る 

簡単すぎた

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x=0.5^y=10000$
$\dfrac{1}{x}-\dfrac{1}{y}=?$
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 
PAGE TOP