福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の条件によって定められる数列\left\{a_n\right\}がある。\\
a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)\\
また、nに無関係な定数p,qに対し、\\
b_n=a_n+pn+q (n=1,2,3,\ldots)\\
とおく。このとき次の問いに答えよ。\\
(1)n,p,qに無関係な定数A,B,C,D,Eが\\
b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)\\
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。\\
(2)Aを(1)で求めた値とする。数列\left\{b_n\right\}が公比Aの等比数列となるような\\
p,qの値をそれぞれ求めよ。\\
(3)(2)で求めたp,qの値に対して、数列\left\{b_n\right\}の一般項を求めよ。
\end{eqnarray}

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の条件によって定められる数列\left\{a_n\right\}がある。\\
a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)\\
また、nに無関係な定数p,qに対し、\\
b_n=a_n+pn+q (n=1,2,3,\ldots)\\
とおく。このとき次の問いに答えよ。\\
(1)n,p,qに無関係な定数A,B,C,D,Eが\\
b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)\\
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。\\
(2)Aを(1)で求めた値とする。数列\left\{b_n\right\}が公比Aの等比数列となるような\\
p,qの値をそれぞれ求めよ。\\
(3)(2)で求めたp,qの値に対して、数列\left\{b_n\right\}の一般項を求めよ。
\end{eqnarray}

2021立教大学経済学部過去問
投稿日:2021.10.16

<関連動画>

【高校数学】等差数列×等比数列の和~どこよりも丁寧に分かりやすく~ 3-12【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差×等比

$S=1・1+2・2++3・2²+…n・2^{n-1}$

を求めよ
この動画を見る 

福田の数学〜部分和と漸化式の扱い方〜慶應義塾大学2023年経済学部第2問〜部分和と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\{a_{n}\}$に対して$\displaystyle \sum_{k=1}^n a_k(n=1,2,3,・・・)$とし、さらに$S_0=0$と定める。$\{a_n\}$は$S_n=\dfrac{1}{4}-\dfrac{1}{2}(n+3)a_{n+1}$(n=0,1,2,・・・)を満たすとする。
(1)$a_1=\dfrac{\fbox{ア}}{\fbox{イ}}$である。また、$n \geqq 1$に対して$a_n=S_n-S_{n-1}$であるから、関係式$(n+\fbox{ウ})a_{n+1}=(n+\fbox{エ})a_n (n=1,2,3,・・・)$・・・(*)が得られる。数列$\{{b_n}\}$を$b_n=n(n+1)(n+2)a_n (n=1,2,3,・・・)$で定めると、$b_1=\fbox{オ}$であり、$n \geqq 1$に対して$b_{n+1}=\fbox{カ}b_n$が成り立つ。ゆえに$a_n=\dfrac{\fbox{キ}}{n(n+1)(n+2)}$が得られる。
次に、数列$\{{T_n}\}=\displaystyle \sum_{k=1}^n \dfrac{a_k}{(k+3)(k+4)}(n=1,2,3,・・・)$で定める。
(2)(*)より導かれる関係式
$\dfrac{a_k}{k+3}-\dfrac{a_{k+1}}{k+4}=\dfrac{\fbox{ク}a_k}{(k+3)(k+4)} (k=1,2,3,・・・)$
を用いると
$T_n=A-\dfrac{\fbox{ケ}}{\fbox{コ}(n+p)(n+q)(n+r)(n+s)}(n=1,2,3,・・・)$
が得られる。ただしここに$A=\fbox{サ}{シス}$であり、$p \lt q\lt r \lt s$として$p=\fbox{セ},q=\fbox{ソ},r=\fbox{タ},s=\fbox{チ}$である。
(3)不等式$|T_n-A| \lt\dfrac{1}{10000(n+1)(n+2)}$を満たす最小の自然数$nはn=\fbox{ツテ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 

東大 三角比と漸化式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.

(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)

1994東大過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(5)〜群数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
自然数n が 2n-1 個続く、初項が1の次のような数列がある。
1,2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5,…

このとき、自然数 m が初めて現れるのは第何項か。
また第 2022項はいくつか。

2022立教学部経済学部過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ \left\{a_n\right\}をa_1=-15および\\
a_{n+1}=a_n+\frac{n}{5}-2  (n=1,2,3,\ldots)\\
を満たす数列とする。\\
(1)a_nが最小となる自然数nを全て求めよ。\\
(2)\left\{a_n\right\}の一般項を求めよ。\\
(3)\sum_{k=1}^na_kが最小となる自然数nを全て求めよ。
\end{eqnarray}

2022北海道大学文系過去問
この動画を見る 
PAGE TOP