福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年理工学部第1問(3)〜複素数平面と図形

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 複素数zと正の実数rは、等式\\
z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)\\
を満たしている。ただし、iは虚数単位である。\\
(\textrm{i})zの偏角\thetaを0 \leqq \theta \lt 2\pi の範囲にとるとき、\thetaのとりうる値の\\
うち最小のものは\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi\ であり、最大のものは\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi\ である。\\
(\textrm{ii})等式(*)と等式\\
\\
|z-i|=1\\
\\
が共に成り立つとき、rの値はr=\boxed{\ \ ナ\ \ }\ またはr=\boxed{\ \ ニ\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
単元: #数A#図形の性質#複素数平面#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 複素数zと正の実数rは、等式\\
z^4=r(\cos\frac{2}{3}\pi+i\sin\frac{2}{3}\pi)  \ldots(*)\\
を満たしている。ただし、iは虚数単位である。\\
(\textrm{i})zの偏角\thetaを0 \leqq \theta \lt 2\pi の範囲にとるとき、\thetaのとりうる値の\\
うち最小のものは\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\pi\ であり、最大のものは\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\pi\ である。\\
(\textrm{ii})等式(*)と等式\\
\\
|z-i|=1\\
\\
が共に成り立つとき、rの値はr=\boxed{\ \ ナ\ \ }\ またはr=\boxed{\ \ ニ\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
投稿日:2021.09.28

<関連動画>

鹿児島(医)慶應(理) 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#複素数平面#集合と命題(集合・命題と条件・背理法)#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
この動画を見る 

Euler's formula 中学生の知識でオイラーの公式を理解しよう 最終回

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学の地域でオイラーの公式を解説していきます.
この動画を見る 

近畿大 茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲

茨城大学過去問題
$x^3=i$を解け
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)\ 座標平面において、点(-1,\ 0)からの距離と点(1,\ 0)からの距離の和が4\\
である点は方程式\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1\ で表される曲線C上にある。点(x,\ y)\\
が曲線C上を動くとき、点(x,\ y)と点(-1,\ 0)の距離をdとおけば、dの最小値\\
は\ \boxed{\ \ ウ\ \ }、最大値は\ \boxed{\ \ エ\ \ }\ となる。複素数zが|z|+|z-4|=8を満たすとき、\\
|z|のとりうる範囲は\ \boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

学習院 複素数 絶対値の最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
複素数Z $(Z \neq 0)$
$ω=Z+\frac{1}{Z}+5$
|Z|=2
|ω|の最大値と最小値
この動画を見る 
PAGE TOP