【問題を使いながらその場で解説!!】テストや模試で活きる数学の答案の作り方〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【問題を使いながらその場で解説!!】テストや模試で活きる数学の答案の作り方〔現役講師解説、数学〕

問題文全文(内容文):
$a$は定数とする。$0≦x≦4$における関数$f(x)=x^2-2ax+3a$について、次のものを求めよ。
(1)最大値
(2)最小値
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$a$は定数とする。$0≦x≦4$における関数$f(x)=x^2-2ax+3a$について、次のものを求めよ。
(1)最大値
(2)最小値
投稿日:2023.07.20

<関連動画>

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} A_n=\left\{1,2,\ldots,n\right\}を、1からnまでの自然数の集合とする。SをA_nの部分集合\\
(空集合およびA_n自身も含む)としたとき、S'をSの要素それぞれに1を加えてできた\\
集合とする。またS''をS'の要素それぞれにさらに1を加えてできた集合とする。\\
たとえば、A_3=\left\{1,2,3\right\}の部分集合S=\left\{1,3\right\}の場合、S'=\left\{2,4\right\},S''=\left\{3,5\right\}\\
\\
(1)A_4=\left\{1,2,3,4\right\}の部分集合S=\left\{1,2,3\right\}はS \cup S'=A_4となる。このように\\
A_4の部分集合でS \cup S'=A_4となるものは\left\{1,2,3\right\}と\left\{1,\boxed{\ \ ア\ \ }\right\}の2つである。\\
\\
(2)A_nの部分集合SでS \cup S'=A_nとなるようなSの個数をa_nとすると、(1)から\\
分かるようにa_4=2であり\\
a_5=\boxed{\ \ イウ\ \ },a_6=\boxed{\ \ エオ\ \ },a_7=\boxed{\ \ カキ\ \ },a_8=\boxed{\ \ クケ\ \ },\ldots,a_{16}=\boxed{\ \ コサシ\ \ }\\
となる。\\
\\
(3)A_4=\left\{1,2,3,4\right\}の部分集合SでS \cup S''=A_4となるものはS=\left\{1,\boxed{\ \ ス\ \ }\right\}だけ\\
である。\\
\\
(4)A_nの部分集合SでS \cup S''=A_nとなるようなSの個数をb_nとすると、(3)から\\
分かうようにb_4=1であり\\
b_5=\boxed{\ \ セソ\ \ },b_6=\boxed{\ \ タチ\ \ },b_7=\boxed{\ \ ツテ\ \ },b_8=\boxed{\ \ トナ\ \ },\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }\\
となる。
\end{eqnarray}
この動画を見る 

【数Ⅰ】図形と計量:正四面体の体積を一瞬で求める方法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【中学数学 三平方の定理 立体図形】
1辺の長さがaの正四面体の体積を求めよ
この動画を見る 

【因数分解】あるあるの難問!パターンを抑えたい数学の問題 #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^4-16x^2+100$
この動画を見る 

連立三元三次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[1]。式の値の計算問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [1] 実数a,b,cがa+b+c=1\ldots①およびa^2+b^2+c^2=13\ldots②を満たしているとする。\\
(1)(a+b+c)^2を展開した式において、①と②を用いるとab+bc+ca=\boxed{\ \ アイ\ \ }\\
であることが分かる。\\
よって、(a-b)^2+(b-c)^2+(c-a)^2=\boxed{\ \ ウエ\ \ }である。\\
\\
(2)a-b=2\sqrt5 の場合に、(a-b)(b-c)(c-a)の値を求めてみよう。\\
b-c=x, c-a=yとおくと、x+y=\boxed{\ \ オカ\ \ }\sqrt5 である。また(1)の計算から\\
x^2+y^2=\boxed{\ \ キク\ \ }が成り立つ。これらより\\
(a-b)(b-c)(c-a)=\boxed{\ \ ケ\ \ }\sqrt5 である。
\end{eqnarray}
この動画を見る 
PAGE TOP