福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。

$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}$

2021上智大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。

$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100}  (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100}  (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500}  (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000}  (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000}  (\textrm{h})p \lt \frac{1}{10000}$

2021上智大学理系過去問
投稿日:2021.09.08

<関連動画>

【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率

-----------------

2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
この動画を見る 

【高校数学】  数A-3  集合③

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1から100までの自然数のうち、2,3,7の少なくとも1つで割り切れる数は何個ある?
この動画を見る 

WASEDAを並べよ 早稲田高校

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
WASEDAの6文字を一列に並べるとき、全ての母音が隣り合っている並べ方は何通り?
早稲田高等学校
この動画を見る 

場合の数 集合~ベン図にまとめよう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある地区で、新聞Aを購読している世帯は全体の50%、新聞Bを購読して
いる世帯は全体の60%、両方を購読している世帯は全体の30%、どちら
も購読していない世帯は8世帯であった。このとき、Aだけを購読している
世帯は全体の何%か。また、この地区の世帯数を求めよ。

海外旅行者100人のうち、75人がカゼ薬を、80人が胃薬を携帯して
いた。次のような人は、最も多くて何人か。また少なくて何人か。
(1)カゼ薬と胃薬を両方とも携帯した人
(2)カゼ薬と胃薬を両方とも携帯してない人
この動画を見る 

なるほど!コメント欄は勉強になります

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1~nの自然数から3つ選ぶ.
3の数のどの2つも連続でない確率を求めよ.

2021近畿大(医)
この動画を見る 
PAGE TOP