福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1)

問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
投稿日:2021.08.26

<関連動画>

関西大 整式の剰余 2つの解法で

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式$P(x)$を$x^2-1$で割ると余りは$x-3$であり,$x^2+1$で割ると余りは$-x+5$である.
$P(x)$を$x^4-1$で割った余りを2通りの解法で求めよ

2001関西大過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(7)切り取られる弦の中点の軌跡(後編)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
この動画を見る 

どっちがでかい

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どっちがでかい?
$1.11^{111}\ vs\ 1111$
この動画を見る 

対頂角が等しいのはなぜ? 気付けば一瞬

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x= \angle y$を示せ
*図は動画内参照

この動画を見る 

福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP