福田のわかった数学〜高校2年生037〜軌跡(4)反転の話その2 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生037〜軌跡(4)反転の話その2

問題文全文(内容文):
数学$\textrm{II}$
軌跡(4) 反転の話(2)
動点Pが直線$l:x+y=1$上を動く。
原点Oを端点とする半直線OP上で
$OP・OQ=1$
を満たす点Qの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$
軌跡(4) 反転の話(2)
動点Pが直線$l:x+y=1$上を動く。
原点Oを端点とする半直線OP上で
$OP・OQ=1$
を満たす点Qの軌跡を求めよ。
投稿日:2021.07.09

<関連動画>

【数Ⅱ】解と係数の関係と対称式 (2-α)(2-β)の値【もっとも簡単な解き方】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+2x+5=0の解を\alpha,\betaとする.(2-\alpha)(2-\beta)を求めよ.$
この動画を見る 

信州大 三角関数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \lt a \lt b \lt 2\pi$
すべての実験$x$について
$\cos x + \cos(x+ \alpha)+ \cos(x+ \beta)=0$が成立するような$\alpha, \beta$の値を求めよ

出典:信州大学 過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】面積の2等分 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=2+x-x²とx軸で囲まれた図形の面積を、点(2,0)を通る直線lが2等分するとき、lの傾きを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、放物線$y=\frac{1}{2}x^2$を$C_1$、放物線$y=-(x-a)^2+b$を$C_2$とする。
(1)$C_1$と$C_2$が異なる2点で交わるためのa,bの条件を求めよ。
以下、$C_1$と$C_2$は異なる2点で交わるとし、$C_1$と$C_2$で囲まれた図形の面積をSとする。
(2)$S=16$となるためのa,bの条件を求めよ。
(3)a,bは$b \leqq a+3$を満たすとする。このときSの最大値を求めよ。

2022名古屋大学文系過去問
この動画を見る 
PAGE TOP