福田のわかった数学〜高校2年生037〜軌跡(4)反転の話その2 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生037〜軌跡(4)反転の話その2

問題文全文(内容文):
数学$\textrm{II}$
軌跡(4) 反転の話(2)
動点Pが直線$l:x+y=1$上を動く。
原点Oを端点とする半直線OP上で
$OP・OQ=1$
を満たす点Qの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$
軌跡(4) 反転の話(2)
動点Pが直線$l:x+y=1$上を動く。
原点Oを端点とする半直線OP上で
$OP・OQ=1$
を満たす点Qの軌跡を求めよ。
投稿日:2021.07.09

<関連動画>

福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。

2020中央大学理工学部過去問
この動画を見る 

大学入試問題#588「なんか似た問題解いたことある。」 横浜市立大学(2020) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$x^4-8x^3+17x^2-8x+1=0$

出典:2020年横浜市立大学医学部 入試問題
この動画を見る 

【高校数学】数Ⅲ-101 指数関数の導関数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$

次の関数を微分せよ。

③$y=5^x$

④$y=3^{-x}$

⑤$y=e^{-2x}$

⑥$y=e^{\sqrt x}$

⑦$y=x・3^x$

⑧$y=x^2 e^x$
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
この動画を見る 

指数方程式 解はアレだけじゃないよ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$5^x・16^ \frac{x-1}{x}=100$
を求めよ。
この動画を見る 
PAGE TOP