福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年経済学部第3問〜数列の部分和と一般項の関係

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 数列\left\{a_n\right\}に対して、\\
S_n=\sum_{k=1}^na_k (n=1,2,3,\ldots)\\
とおく。\left\{a_n\right\}は、a_2=1,a_6=2および\\
(*) S_n=\frac{(n-2)(n+1)^2}{4}a_{n+1} (n=1,2,3,\ldots)\\
を満たすとする。\\
\\
(1)a_1=-\boxed{\ \ ア\ \ }である。(*)でn=4,5とすると、a_3+a_4とa_5の関係が2通り定まり、\\
a_5=\boxed{\ \ イ\ \ }と求まる。さらに(*)でn=3として、a_3=\boxed{\ \ ウエ\ \ },a_4=\boxed{\ \ オカ\ \ }と求まる。\\
\\
(2)n \geqq 2に対してa_n=S_n-S_{n-1}であるから(*)とあわせて\\
(n-\boxed{\ \ キ\ \ })(n+\boxed{\ \ ク\ \ })^2a_{n+1}=(n^3-\boxed{\ \ ケ\ \ }n^2+\boxed{\ \ コ\ \ })a_n (n=2,3,\ldots)\\
\\
ゆえに、n \geqq 3ならば(n+\boxed{\ \ サ\ \ })a_{n+1}=(n-\boxed{\ \ シ\ \ })a_nとなる。そこで、n \geqq 3に\\
対してb_n=(n-r)(n-s)(n-t)a_nとおくと、漸化式\\
b_{n+1}=b_n (nz-3,4,5,\ldots)\\
が成り立つ。ただしここに、r \lt s \lt tとしてr=\boxed{\ \ ス\ \ },s=\boxed{\ \ セ\ \ },t=\boxed{\ \ ソ\ \ }である。\\
したがって、n \geqq 4に対して\\
a_n=\frac{\boxed{\ \ ソ\ \ }a_4}{(n-r)(n-s)(n-t)}\\
となる。この式はn=3の時も成立する。\\
\\
(3)n \geqq 2に対して\\
S_n=\frac{\boxed{\ \ チツ\ \ }(n+\boxed{\ \ テ\ \ })(n-\boxed{\ \ ト\ \ })}{n(n-\boxed{\ \ ナ\ \ })}\\
であるから、S_n \geqq 59となる最小のnはn=\boxed{\ \ ニヌ\ \ }である。
\end{eqnarray}
投稿日:2021.07.07

<関連動画>

福田の数学〜部分和と漸化式の扱い方〜慶應義塾大学2023年経済学部第2問〜部分和と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$\{a_{n}\}$に対して$\displaystyle \sum_{k=1}^n a_k(n=1,2,3,・・・)$とし、さらに$S_0=0$と定める。$\{a_n\}$は$S_n=\dfrac{1}{4}-\dfrac{1}{2}(n+3)a_{n+1}$(n=0,1,2,・・・)を満たすとする。
(1)$a_1=\dfrac{\fbox{ア}}{\fbox{イ}}$である。また、$n \geqq 1$に対して$a_n=S_n-S_{n-1}$であるから、関係式$(n+\fbox{ウ})a_{n+1}=(n+\fbox{エ})a_n (n=1,2,3,・・・)$・・・(*)が得られる。数列$\{{b_n}\}$を$b_n=n(n+1)(n+2)a_n (n=1,2,3,・・・)$で定めると、$b_1=\fbox{オ}$であり、$n \geqq 1$に対して$b_{n+1}=\fbox{カ}b_n$が成り立つ。ゆえに$a_n=\dfrac{\fbox{キ}}{n(n+1)(n+2)}$が得られる。
次に、数列$\{{T_n}\}=\displaystyle \sum_{k=1}^n \dfrac{a_k}{(k+3)(k+4)}(n=1,2,3,・・・)$で定める。
(2)(*)より導かれる関係式
$\dfrac{a_k}{k+3}-\dfrac{a_{k+1}}{k+4}=\dfrac{\fbox{ク}a_k}{(k+3)(k+4)} (k=1,2,3,・・・)$
を用いると
$T_n=A-\dfrac{\fbox{ケ}}{\fbox{コ}(n+p)(n+q)(n+r)(n+s)}(n=1,2,3,・・・)$
が得られる。ただしここに$A=\fbox{サ}{シス}$であり、$p \lt q\lt r \lt s$として$p=\fbox{セ},q=\fbox{ソ},r=\fbox{タ},s=\fbox{チ}$である。
(3)不等式$|T_n-A| \lt\dfrac{1}{10000(n+1)(n+2)}$を満たす最小の自然数$nはn=\fbox{ツテ}$である。
この動画を見る 

東京女子大 漸化式・数列の最大値

アイキャッチ画像
単元: #数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1は7であり,n^2a_{n+1}-(n+1)^2a_n=-n^2(n+1)^2である.

(1)a_nの一般項を求めよ.

(2)a_nの最大値を求めよ.$
この動画を見る 

三項間漸化式 兵庫県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
a(n+2)
この動画を見る 

数列 数B 等差数列基本1【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
1問目
nは自然数の定数とする。次の数列の第k項をkの式で表せ

2問目
(1)等差数列 100,94,88,……において,第何項が初めて負の数となるか。
(2)等差数列5,9, 13,………において,第何項が初めて100より大きくなるか。

3問目
一般項が an =3―4nで表される数列(an) がある。数列(an)の項を,初項から2つおきにとってできる数列 a1,a2,a3…….は等差数列であることを示せ。また,初項と公差を求めよ。

4問目
数列 (an),(bn)が等差数列ならば,次の数列も等差数列であることを証明せよ。
(1) a5n
(2) {2an -3bn}
(3) {a2n + b3n}
この動画を見る 

これ説明できる?

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
一筆書きできる確率、一筆書きできない確率
この動画を見る 
PAGE TOP