福田のわかった数学〜高校2年生034〜軌跡(1)アポロニウスの円 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生034〜軌跡(1)アポロニウスの円

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(1) アポロ二ウスの円\\
点O(0,0)に高さ6の、A(10,0)に高さ4\\
の塔がxy平面に垂直に立っている。\\
xy平面上で2本の塔を見上げる角が\\
等しい点Pの軌跡を求めよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(1) アポロ二ウスの円\\
点O(0,0)に高さ6の、A(10,0)に高さ4\\
の塔がxy平面に垂直に立っている。\\
xy平面上で2本の塔を見上げる角が\\
等しい点Pの軌跡を求めよ。
\end{eqnarray}
投稿日:2021.06.27

<関連動画>

福田の数学〜慶應義塾大学2024年経済学部第1問(2)〜三角関数への置き換えによる分数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)$\theta$は|$\theta$|<$\displaystyle\frac{\pi}{2}$の範囲の定数とする。$x$=$\tan\theta$とおくと、$\displaystyle\frac{x}{x^2+1}$=$\frac{\boxed{ク}}{\boxed{ケ}}\sin2\theta$かつ$\displaystyle\frac{1}{x^2+1}$=$\frac{\boxed{コ}}{\boxed{サ}}(\cos2\theta$+1)であるので、$\displaystyle y=\frac{x^2+3x+5}{x^2+1}$とすると、
$\displaystyle y=\frac{\boxed{シ}}{\boxed{ス}}\sin(2\theta+\alpha)$+$\boxed{セ}$
と表せる。ただし、$\cos\alpha$=$\frac{\boxed{ソ}}{\boxed{タ}}$, $\sin\alpha$=$\frac{\boxed{チ}}{\boxed{ツ}}$である。また、|$x$|≦1に対応する$\theta$の範囲が|$\theta$|≦$\displaystyle\frac{\pi}{\boxed{テ}}$であることに注意すると、|$x$|≦1における$y$の取りうる値の最大値は$\frac{\boxed{トナ}}{\boxed{ニ}}$、最小値は$\frac{\boxed{ヌ}}{\boxed{ネ}}$ である。
この動画を見る 

【数Ⅱ】複素数と方程式:3次方程式x³-x²+2x-3=0の3つの解をα,β,γとするとき、次の式の値を求めよう。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式$x^3-x^2+2x-3=0$の3つの解を$\alpha,\beta,y$とするとき、次の式の値を求めよう。
(1)$\alpha^2+\beta^2+y^2$
(2)$\alpha^3+\beta^3+y^3$
(3)$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{y}$
(4)$(1-\alpha)(1-\beta)(1-y)$
この動画を見る 

首都大学 対数 整数問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{10}x+log_{10}y=log_{10}(y+2x^2+1)$を満たす整数$(x,y)$の組をすべて求めよ

出典:2008年東京都立大学 過去問
この動画を見る 

Japanese Mathematics Olympiad 2001

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これらの方程式に適合する実数xを見つけてください
$x^5+2x^4-x^3-5x^2-10x+5=0$
$x^6+4x^5+3x^4-6x^3-20x^2-15x+5=0$
この動画を見る 

福田の数学〜中央大学2023年経済学部第1問(4)〜対数の大小比較

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)次の3つの数A, B, Cを小さい順に並べよ。
A=$\frac{1}{2}\log_2\frac{1}{2}$, B=$\frac{1}{3}\log_2\frac{1}{3}$, A=$\frac{1}{6}\log_2\frac{1}{6}$
この動画を見る 
PAGE TOP