【頻出】整数の証明問題【数学 入試問題】 - 質問解決D.B.(データベース)

【頻出】整数の証明問題【数学 入試問題】

問題文全文(内容文):
(1)$n$を自然数とするとき、$n^2$は$3$の倍数か、または$3$で割った余りが$1$であることを証明せよ。
(2)自然数$a,b,c$が$a^2+b^2=c^2$を満たすとき、$a,b$のうち少なくとも$1$つは$3$の倍数出あることを証明せよ。

数学入試問題過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とするとき、$n^2$は$3$の倍数か、または$3$で割った余りが$1$であることを証明せよ。
(2)自然数$a,b,c$が$a^2+b^2=c^2$を満たすとき、$a,b$のうち少なくとも$1$つは$3$の倍数出あることを証明せよ。

数学入試問題過去問
投稿日:2022.05.14

<関連動画>

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \sum_{n=1}^{2022} n^{2022}$
$ =1^{2022}+2^{2022}+3^{2022}+・・・・・・$
$+2021^{2022}+2022^{2022}$
を13で割った余りを求めよ.
この動画を見る 

福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る 

ざ・見掛け倒しだよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+……+\dfrac{32}{33}=\dfrac{a}{33!}$
$a$を$17$で割った余りを求めよ.
この動画を見る 

11の倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
11の倍数の判定法
この動画を見る 

2021京都大 整数問題(理系)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n-2^n$が素数なら$n$は素数であることを示せ.

2021京都大(理)
この動画を見る 
PAGE TOP