【高校数学】微分3.5~例題・接線の求め方・基礎~ 6-7【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】微分3.5~例題・接線の求め方・基礎~ 6-7【数学Ⅱ】

問題文全文(内容文):
(1)曲線y=-x²+2x+4上の点(-1,1)における接線の方程式を求めよ。

(2)曲線y=x²+4に点(1,1)から引いた接線の方程式と、接点の座標を求めよ。
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)曲線y=-x²+2x+4上の点(-1,1)における接線の方程式を求めよ。

(2)曲線y=x²+4に点(1,1)から引いた接線の方程式と、接点の座標を求めよ。
投稿日:2019.02.04

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$r$を正の実数とし、円$C_1:(x-2)^2+y^2=r^2$、楕円$C_2:\frac{x^2}{9}+y^2=1$を考える。
(1)円$C_1$と楕円$C_2$の共有点が存在するようなrの値の範囲は$\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }$である。
(2)$r=1$のとき、$C_1$と$C_2$の共有点の座標を全て求めると$\boxed{\ \ ク\ \ }$である。
これらの共有点のうちy座標が正となる点のy座標を$y_0$とする。連立不等式

$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right.$
の表す領域の面積は$\boxed{\ \ ケ\ \ }$である。

(3)連立不等式
$\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right.$
の表す領域をDとする。Dをy軸のまわりに
1回転させてできる立体の体積は$\boxed{\ \ コ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

#産業医科大学2024#定積分_46

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} \sqrt{3-x^2+2x}\ dx$
を解け.

2024産業医科大学過去問題
この動画を見る 

慶應義塾大(経済)漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$
$a_{n+1}=2a_n^2$

(1)
一般項$a_n$1を求めよ

(2)
$a_n \lt 10^{60}$を満たす最大の$n$
$log_{10}2=0.3010$

出典:2005年慶應義塾大学経済学部 過去問
この動画を見る 

08岡山県教員採用試験(数学:1-(3) 点と直線の距離)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$

円$x^2+y^2+2x-4y-1=0$と
直線$4x+3y-12=0$の異なる交点を$A,B$とする.
$AB$の長さを求めよ.
この動画を見る 

【高校数学】 数Ⅱ-157 関数の最大値・最小値②

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x+3y=9.x \geqq 0、y \geqq 0$のとき、次の問いに答えよう。

①xのとりうる値の範囲を求めよう。

②$x^2y$の最大値と最小値、およびそのときのx,yの値を求めよう。
この動画を見る 
PAGE TOP