福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
投稿日:2021.02.19

<関連動画>

微分方程式⑧-3【非同次2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式を解説していきます.
この動画を見る 

04愛知県教員採用試験(数学:9番 微分方程式)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{9}$
$\dfrac{dy}{dx}=\dfrac{-x+3}{y-4}$をみたす図形が
原点を通るとき,この図形で囲まれる面積を求めよ.
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 $y^2=8x$ 上の点P($1,-2\sqrt2$)における接線の方程式を求めよう。
この動画を見る 

福田の数学〜立教大学2022年理学部第2問〜接線と囲まれた部分の面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数xに対し、関数f(x)を
$f(x)=xe^{-x}$
により定める。座標平面上の曲線$C:y=f(x)$に関して、次の問(1)~(5)に答えよ。
(1)f(x)の導関数$f'(x)$を求め、$f(x)$の増減表を書け。ただし、極値も記入すること。
(2)f(x)の第2次導関数$f''(x)$を求め、Cの変曲点の座標を求めよ。
(3)Cの変曲点と、座標平面上の原点を通る直線を$l$とする。
Cとlで囲まれた領域の面積Sを求めよ。
(4)$a,\ b,\ c$を定数とし、関数$g(x)$を$g(x)=(ax^2+bx+c)e^{-2x}$と定める。
$g(x)$の導関数$g'(x)$が$g'(x)=x^2e^{-2x}$を満たすとき、$a,\ b,\ c$の値を求めよ。
(5)Cと(3)で定めたlで囲まれた領域を、x軸の周りに1回転してできる
回転体の体積Vを求めよ。

2022立教大学理学部過去問
この動画を見る 

指数不等式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\left(\dfrac{5}{3}\right)^{\frac{x^2+x-3}{x+1}}\leqq \dfrac{2}{3}・\left(\dfrac{5}{2}\right)^{x-\left(\frac{3}{x+1}\right)}$
この動画を見る 
PAGE TOP