いい問題 - 質問解決D.B.(データベース)

いい問題

問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
投稿日:2023.07.27

<関連動画>

【高校数学】 数B-70 等比数列とその和⑥

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①初項2,公比3の等比数列について,初項から第何項までの和が初めて
1000より大きくなるかを求めよ.

②初項1,公比5の等比数列について,$a_1+a_2+・・・+a_n\geqq 10^{50}$を満たす
最小の$n$を求めよう.
ただし,$\log_{10} 2=0.3.10$とする.
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第5問〜人形を並べる方法と漸化式

単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$(1)同じ人形$n$体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。
例えば$n=10$のとき、下図(※動画参照)のような並べ方がある。

ここで、$n$体の人形の並べ方の総数を$a_n$とすると
$a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。
その並べ方の総数を$b_n$とすると
$b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }$
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。

2021慶應義塾大学整合政策学部過去問
この動画を見る 

【数学B/テスト対策】等比数列の一般項と和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
等比数列$-2,6,-18,54,…$について、次の問いに答えよ。
(1)
一般項$a_n$を求めよ。

(2)
初項から第$n$項までの和$S_n$を求めよ。

(3)
初項から第$5$項までの和$S_5$を求めよ。
この動画を見る 

日本獣医生命科学大 例のあれ

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
この動画を見る 

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
この動画を見る 
PAGE TOP